First Order Logic Part 1

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department University of Wisconsin, Madison

[Based on slides from Burr Settles and Jerry Zhu]

Problems with propositional logic

 Consider the game "minesweeper" on a 10x10 field with only one landmine.

 How do you express the knowledge, with propositional logic, that the squares adjacent to the landmine will display the number 1?

Problems with propositional logic

 Consider the game "minesweeper" on a 10x10 field with only one landmine.

- How do you express the knowledge, with propositional logic, that the squares adjacent to the landmine will display the number 1?
- Intuitively with a rule like landmine(x,y) ⇒ number1(neighbors(x,y)) but propositional logic cannot do this...

Problems with propositional logic

- Propositional logic has to say, e.g. for cell (3,4):
 - Landmine_3_4 \Rightarrow number1_2_3
 - Landmine_3_4 \Rightarrow number1_2_4
 - Landmine_3_4 \Rightarrow number1_2_5
 - Landmine_3_4 \Rightarrow number1_3_3
 - Landmine_3_4 \Rightarrow number1_3_5
 - Landmine_3_4 \Rightarrow number1_4_3
 - Landmine_3_4 \Rightarrow number1_4_4
 - Landmine_3_4 \Rightarrow number1_4_5
 - And similarly for each of Landmine_1_1, Landmine_1_2, Landmine_1_3, ..., Landmine_10_10!
- Difficult to express large domains concisely
- Don't have objects and relations
- First Order Logic is a powerful upgrade

Ontological commitment

 Logics are characterized by what they consider to be 'primitives'

Logic	Primitives	Available Knowledge
Propositional	facts	true/false/unknown
First-Order	facts, objects, relations	true/false/unknown
Temporal	facts, objects, relations, times	true/false/unknown
Probability Theory	facts	degree of belief 01
Fuzzy	degree of truth	degree of belief 01

First Order Logic syntax

- **Term**: an object in the world
 - **Constant**: Jerry, 2, Madison, Green, ...
 - Variables: x, y, a, b, c, ...
 - Function(term₁, ..., term_n)
 - Sqrt(9), Distance(Madison, Chicago)
 - Maps one or more objects to another object
 - Can refer to an unnamed object: LeftLeg(John)
 - Represents a user defined functional relation
- A **ground term** is a term without variables.

FOL syntax

- Atom: smallest T/F expression
 - Predicate(term₁, ..., term_n)
 - Teacher(Jerry, you), Bigger(sqrt(2), x)
 - Convention: read "Jerry (is)Teacher(of) you"
 - Maps one or more objects to a truth value
 - Represents a user defined relation
 - term₁ = term₂
 - Radius(Earth)=6400km, 1=2
 - Represents the equality relation when two terms refer to the same object

FOL syntax

- Sentence: T/F expression
 - Atom
 - Complex sentence using connectives: ∧ ∨ ¬ ⇒ ⇔
 - Spouse(Jerry, Jing) \Rightarrow Spouse(Jing, Jerry)
 - Less(11,22) ^ Less(22,33)
 - Complex sentence using quantifiers ∀, ∃
- Sentences are evaluated under an interpretation
 - Which objects are referred to by constant symbols
 - Which objects are referred to by function symbols
 - What subsets defines the predicates

- Universal quantifier: ∀
- Sentence is true for all values of x in the domain of variable x.
- Main connective typically is \Rightarrow
 - Forms if-then rules
 - "all humans are mammals"

 $\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)$

Means if x is a human, then x is a mammal

 $\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)$

 It's a big AND: Equivalent to the conjunction of all the instantiations of variable x:

(human(Jerry) ⇒ mammal(Jerry)) ∧
 (human(Jing) ⇒ mammal(Jing)) ∧
(human(laptop) ⇒ mammal(laptop)) ∧...

Common mistake is to use
 A as main connective

 $\forall x human(x) \land mammal(x)$

This means everything is human and a mammal!

(human(Jerry) ^ mammal(Jerry)) ^
 (human(Jing) ^ mammal(Jing)) ^
(human(laptop) ^ mammal(laptop)) ^ ...

- Existential quantifier: 3
- Sentence is true for some value of x in the domain of variable x.
- Main connective typically is
 - "some humans are male"

 $\exists x human(x) \land male(x)$

Means there is an x who is a human and is a male

 $\exists x human(x) \land male(x)$

 It's a big OR: Equivalent to the disjunction of all the instantiations of variable x:

(human(Jerry) ∧ male(Jerry)) ∨

(human(Jing) ^ male(Jing))

(human(laptop) \land male(laptop)) \lor ...

• Common mistake is to use \Rightarrow as main connective

"Some pig can fly"

 $\exists x pig(x) \Rightarrow fly(x)$ (wrong)

 $\exists x human(x) \land male(x)$

 It's a big OR: Equivalent to the disjunction of all the instantiations of variable x:

(human(Jerry) \land male(Jerry)) \lor

(human(Jing) 🔨 male(Jing)) 🗸

(human(laptop) \land male(laptop)) \lor ...

- Common mistake is to use \Rightarrow as main connective
 - "Some pig can fly"

 $\exists x pig(x) \Rightarrow fly(x) (wrong)$

• This is true if there is something not a pig!

 $(pig(Jerry) \Rightarrow fly(Jerry)) \lor$ $(pig(laptop) \Rightarrow fly(laptop)) \lor ...$

- Properties of quantifiers:
 - $\forall \mathbf{x} \forall \mathbf{y}$ is the same as $\forall \mathbf{y} \forall \mathbf{x}$
 - ∃**x** ∃**y** is the same as ∃**y** ∃**x**
- Example:
 - $\forall x \forall y$ likes(x,y)

Everyone likes everyone.

• $\forall y \forall x$ likes(x,y)

Everyone is liked by everyone.

- Properties of quantifiers:
 - $\forall \mathbf{x} \exists \mathbf{y} \text{ is not the same as } \exists \mathbf{y} \forall \mathbf{x}$
 - $\exists \mathbf{x} \forall \mathbf{y} \text{ is not the same as } \forall \mathbf{y} \exists \mathbf{x}$
- Example:
 - $\forall x \exists y$ likes(x,y)

Everyone likes someone (can be different).

•
$$\exists y \forall x \text{ likes}(x, y)$$

There is someone who is liked by everyone.

- Properties of quantifiers:
 - $\forall \mathbf{x} \mathbf{P}(\mathbf{x})$ when negated becomes $\exists \mathbf{x} \neg \mathbf{P}(\mathbf{x})$
 - $\exists x P(x)$ when negated becomes $\forall x \neg P(x)$
- Example:
 - $\forall x$ sleep(x)

Everybody sleeps.

•
$$\exists x \neg sleep(x)$$

Somebody does not sleep.

- Properties of quantifiers:
 - $\forall \mathbf{x} \ \mathbf{P}(\mathbf{x})$ is the same as $\neg \exists \mathbf{x} \ \neg \mathbf{P}(\mathbf{x})$
 - $\exists x P(x) \text{ is the same as } \neg \forall x \neg P(x)$
- Example:
 - $\forall x$ sleep(x)

Everybody sleeps.

 $\neg \exists x \neg sleep(x)$

There does not exist someone who does not sleep.

FOL syntax

- A free variable is a variable that is not bound by an quantifier, e.g. ∃y Likes (x,y): x is free, y is bound
- A well-formed formula (wff) is a sentence in which all variables are quantified (no free variable)
- Short summary so far:
 - Constants: Bob, 2, Madison, ...
 - Variables: *x*, *y*, *a*, *b*, *c*, …
 - Functions: Income, Address, Sqrt, ...
 - **Predicates:** Teacher, Sisters, Even, Prime...
 - Connectives: $\land \lor \neg \Rightarrow \Leftrightarrow$
 - Equality: =
 - Quantifiers: ∀∃

More summary

- Term: constant, variable, function. Denotes an object. (A ground term has no variables)
- Atom: the smallest expression assigned a truth value. Predicate and =
- Sentence: an atom, sentence with connectives, sentence with quantifiers. Assigned a truth value
- Well-formed formula (wff): a sentence in which all variables are quantified