First Order Logic Part 1

Yingyu Liang

yliang@cs.wisc.edu
Computer Sciences Department
University of Wisconsin, Madison

Problems with propositional logic

- Consider the game "minesweeper" on a 10×10 field with only one landmine.

- How do you express the knowledge, with propositional logic, that the squares adjacent to the landmine will display the number 1 ?

Problems with propositional logic

- Consider the game "minesweeper" on a 10×10 field with only one landmine.

- How do you express the knowledge, with propositional logic, that the squares adjacent to the landmine will display the number 1 ?
- Intuitively with a rule like
landmine(x, y) \Rightarrow number1(neighbors(x, y))
but propositional logic cannot do this...

Problems with propositional logic

- Propositional logic has to say, e.g. for cell $(3,4)$:
- Landmine_3_4 \Rightarrow number1_2_3
- Landmine_3_4 \Rightarrow number1_2_4
- Landmine_3_4 \Rightarrow number1_2_5
- Landmine_3_4 \Rightarrow number1_3_3
- Landmine_3_4 \Rightarrow number1_3_5
- Landmine_3_4 \Rightarrow number1_4_3
- Landmine_3_4 \Rightarrow number1_4_4
- Landmine_3_4 \Rightarrow number1_4_5
- And similarly for each of Landmine_1_1, Landmine_1_2, Landmine_1_3, ..., Landmine_10_10!
- Difficult to express large domains concisely
- Don't have objects and relations
- First Order Logic is a powerful upgrade

Ontological commitment

- Logics are characterized by what they consider to be 'primitives'

Logic	Primitives	Available Knowledge
Propositional	facts	true/false/unknown
First-Order	facts, objects, relations	true/false/unknown
Temporal	facts, objects, relations, times	true/false/unknown
Probability Theory	facts	degree of belief $0 \ldots 1$
Fuzzy	degree of truth	degree of belief $0 \ldots 1$

First Order Logic syntax

- Term: an object in the world
- Constant: Jerry, 2, Madison, Green, ...
- Variables: x, y, a, b, c, \ldots
- Function(term ${ }_{1}, \ldots$, term $\left._{n}\right)$
- Sqrt(9), Distance(Madison, Chicago)
- Maps one or more objects to another object
- Can refer to an unnamed object: LeftLeg(John)
- Represents a user defined functional relation
- A ground term is a term without variables.

FOL syntax

- Atom: smallest T/F expression
- Predicate(term ${ }_{1}, \ldots$, term $_{n}$)
- Teacher(Jerry, you), Bigger(sqrt(2), x)
- Convention: read "Jerry (is)Teacher(of) you"
- Maps one or more objects to a truth value
- Represents a user defined relation
- term ${ }_{1}=$ term $_{2}$
- Radius(Earth)=6400km, 1=2
- Represents the equality relation when two terms refer to the same object

FOL syntax

- Sentence: T/F expression
- Atom
- Complex sentence using connectives: $\wedge \vee \neg \Rightarrow \Leftrightarrow$
- Spouse(Jerry, Jing) \Rightarrow Spouse(Jing, Jerry)
- Less(11,22) ^Less(22,33)
- Complex sentence using quantifiers \forall, \exists
- Sentences are evaluated under an interpretation
- Which objects are referred to by constant symbols
- Which objects are referred to by function symbols
- What subsets defines the predicates

FOL quantifiers

- Universal quantifier: \forall
- Sentence is true for all values of x in the domain of variable x .
- Main connective typically is \Rightarrow
- Forms if-then rules
- "all humans are mammals"
$\forall \mathbf{x}$ human (\mathbf{x}) \Rightarrow mammal (\mathbf{x})
- Means if x is a human, then x is a mammal

FOL quantifiers

$\forall \mathbf{x}$ human (\mathbf{x}) \Rightarrow mammal (\mathbf{x})

- It's a big AND: Equivalent to the conjunction of all the instantiations of variable x :

$$
\begin{gathered}
(\text { human (Jerry) } \Rightarrow \text { mammal (Jerry)) } \wedge \\
(\text { human (Jing) }
\end{gathered} \Rightarrow \text { mammal (Jing)) } \wedge
$$

- Common mistake is to use \wedge as main connective $\forall \mathbf{x}$ human (\mathbf{x}) ^mammal (\mathbf{x})
- This means everything is human and a mammal!

$$
\begin{aligned}
& (\text { human }(\text { Jerry }) \wedge \text { mammal (Jerry) }) ~ \wedge \\
& (\text { human (Jing) } \wedge \text { mammal (Jing)) } \wedge \\
& (\text { human (laptop) } \wedge \text { mammal (laptop) }) ~ \wedge \ldots
\end{aligned}
$$

FOL quantifiers

- Existential quantifier: \exists
- Sentence is true for some value of x in the domain of variable x .
- Main connective typically is \wedge
- "some humans are male"

$$
\exists \mathbf{x} \text { human (x) } \wedge \text { male }(x)
$$

- Means there is an x who is a human and is a male

FOL quantifiers

$\exists \mathrm{x}$ human (x) \wedge male (x)

- It's a big OR: Equivalent to the disjunction of all the instantiations of variable x :

$$
\begin{aligned}
& (\text { human }(J e r r y) \wedge \text { male }(J e r r y)) \vee \\
& (\text { human }(J i n g) \wedge \operatorname{male}(J i n g)) \vee \\
& (\text { human }(l a p t o p) \wedge \operatorname{male}(l a p t o p)) \vee \ldots
\end{aligned}
$$

- Common mistake is to use \Rightarrow as main connective
- "Some pig can fly"

$$
\exists \mathbf{x} \operatorname{pig}(x) \Rightarrow f l y(x) \quad \text { (wrong) }
$$

FOL quantifiers

$\exists \mathrm{x}$ human (x) \wedge male (x)

- It's a big OR: Equivalent to the disjunction of all the instantiations of variable x :

$$
\begin{aligned}
& (\text { human (Jerry) } \wedge \text { male }(J e r r y)) ~ \vee \\
& (\text { human }(J i n g) \wedge \operatorname{male}(J i n g)) \vee \\
& (\text { human }(l a p t o p) \wedge \operatorname{male}(l a p t o p)) \vee \ldots
\end{aligned}
$$

- Common mistake is to use \Rightarrow as main connective
- "Some pig can fly"

$$
\exists \mathrm{x} \operatorname{pig}(\mathrm{x}) \Rightarrow \mathrm{fly}(\mathrm{x}) \text { (wrong) }
$$

This is true if there is something not a pig!

$$
\begin{aligned}
(\text { pig(Jerry }) & \Rightarrow f l y(J e r r y)) ~ \vee \\
(\text { pig(laptop) } & \Rightarrow f l y(\text { laptop })) ~ \vee \ldots
\end{aligned}
$$

FOL quantifiers

- Properties of quantifiers:
- $\forall \mathbf{x} \forall \mathbf{y}$ is the same as $\forall \mathbf{y} \forall \mathbf{x}$
- $\exists \mathrm{x} \exists \mathrm{y}$ is the same as $\exists \mathrm{y} \exists \mathrm{x}$
- Example:
- $\forall \mathbf{x} \forall \mathbf{y}$ likes (x, y)

Everyone likes everyone.

- $\forall \mathrm{y} \forall \mathrm{x}$ likes (x, y)

Everyone is liked by everyone.

FOL quantifiers

- Properties of quantifiers:
- $\forall \mathbf{x} \exists \mathbf{y}$ is not the same as $\exists \mathbf{y} \forall \mathbf{x}$
- $\exists \mathbf{x} \forall \mathbf{y}$ is not the same as $\forall \mathbf{y} \exists \mathbf{x}$
- Example:
- $\forall \mathbf{x} \exists \mathrm{y}$ likes (x, y)

Everyone likes someone (can be different).

- $\exists \mathrm{y} \forall \mathrm{x}$ likes (x, y)

There is someone who is liked by everyone.

FOL quantifiers

- Properties of quantifiers:
- $\forall \mathbf{x} \mathbf{P}(\mathbf{x})$ when negated becomes $\exists \mathbf{x} \neg \mathrm{P}(\mathrm{x})$
- $\exists \mathrm{x}$ P(x) when negated becomes $\forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
- Example:
- $\forall \mathbf{x}$ sleep (x)

Everybody sleeps.

- $\exists \mathrm{x}$ ᄀsleep (x)

Somebody does not sleep.

FOL quantifiers

- Properties of quantifiers:
- $\forall x \quad P(x)$ is the same as $\neg \exists x \neg P(x)$
- $\exists \mathrm{x} P(\mathrm{x})$ is the same as $\neg \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
- Example:
- $\forall \mathbf{x}$ sleep (x)

Everybody sleeps.

- $\neg \exists \mathbf{x}$ ᄀsleep (x)

There does not exist someone who does not sleep.

FOL syntax

- A free variable is a variable that is not bound by an quantifier, e.g. $\exists \mathrm{y}$ Likes $(\mathrm{x}, \mathrm{y}): \mathrm{x}$ is free, y is bound
- A well-formed formula (wff) is a sentence in which all variables are quantified (no free variable)
- Short summary so far:
- Constants: Bob, 2, Madison, ...
- Variables: x, y, a, b, c, \ldots
- Functions: Income, Address, Sqrt, ...
- Predicates: Teacher, Sisters, Even, Prime...
- Connectives: $\wedge \vee \neg \Rightarrow \Leftrightarrow$
- Equality: =
- Quantifiers: $\forall \exists$

More summary

- Term: constant, variable, function. Denotes an object. (A ground term has no variables)
- Atom: the smallest expression assigned a truth value. Predicate and =
- Sentence: an atom, sentence with connectives, sentence with quantifiers. Assigned a truth value
- Well-formed formula (wff): a sentence in which all variables are quantified

