
slide 1

Advanced Search
Hill climbing

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

[Based on slides from Jerry Zhu, Andrew Moore http://www.cs.cmu.edu/~awm/tutorials]

slide 2

Optimization problems

• Previously we want a path from start to goal

▪ Uninformed search: g(s): Iterative Deepening

▪ Informed search: g(s)+h(s): A*

• Now a different setting:

▪ Each state s has a score f(s) that we can compute

▪ The goal is to find the state with the highest score, or

a reasonably high score

▪ Do not care about the path

▪ This is an optimization problem

▪ Enumerating the states is intractable

▪ Even previous search algorithms are too expensive

slide 3

Examples

• N-queen: f(s) = number of conflicting queens
in state s

Note we want s with the lowest score f(s)=0. The techniques
are the same. Low or high should be obvious from context.

slide 4

Examples

• N-queen: f(s) = number of conflicting queens
in state s

• Traveling salesperson problem (TSP)

▪ Visit each city once, return to first city

▪ State = order of cities, f(s) = total mileage

Note we want s with the lowest score f(s)=0. The techniques
are the same. Low or high should be obvious from context.

slide 5

Examples

• N-queen: f(s) = number of conflicting queens
in state s

• Traveling salesperson problem (TSP)

▪ Visit each city once, return to first city

▪ State = order of cities, f(s) = total mileage

• Boolean satisfiability (e.g., 3-SAT)

▪ State = assignment to variables

▪ f(s) = # satisfied clauses

Note we want s with the lowest score f(s)=0. The techniques
are the same. Low or high should be obvious from context.

A B C

A C D

B D E

C D E

A C E

slide 6

1. HILL CLIMBING

slide 7

Hill climbing

• Very simple idea: Start from some state s,

▪ Move to a neighbor t with better score. Repeat.

• Question: what’s a neighbor?

▪ You have to define that!

▪ The neighborhood of a state is the set of neighbors

▪ Also called ‘move set’

▪ Similar to successor function

slide 8

Neighbors: N-queen

• Example: N-queen (one queen per column). One
possibility:

…

s

f(s)=1

Neighborhood

of s

slide 9

Neighbors: N-queen

• Example: N-queen (one queen per column). One
possibility:

▪ Pick the right-most most-conflicting column;

▪ Move the queen in that column vertically to a

different location.

…

s

f(s)=1

Neighborhood

of s

f=1

f=2

tie breaking more promising?

slide 10

Neighbors: TSP

• state: A-B-C-D-E-F-G-H-A

• f = length of tour

slide 11

Neighbors: TSP

• state: A-B-C-D-E-F-G-H-A

• f = length of tour

• One possibility: 2-change

A-B-C-D-E-F-G-H-A

A-E-D-C-B-F-G-H-A

flip

slide 12

Neighbors: SAT

• State: (A=T, B=F, C=T, D=T, E=T)

• f = number of satisfied clauses

• Neighbor:

A B C

A C D

B D E

C D E

A C E

slide 13

Neighbors: SAT

• State: (A=T, B=F, C=T, D=T, E=T)

• f = number of satisfied clauses

• Neighbor: flip the assignment of one variable

A B C

A C D

B D E

C D E

A C E

(A=F, B=F, C=T, D=T, E=T)

(A=T, B=T, C=T, D=T, E=T)

(A=T, B=F, C=F, D=T, E=T)

(A=T, B=F, C=T, D=F, E=T)

(A=T, B=F, C=T, D=T, E=F)

slide 14

Hill climbing

• Question: What’s a neighbor?

▪ (vaguely) Problems tend to have structures. A small

change produces a neighboring state.

▪ The neighborhood must be small enough for

efficiency

▪ Designing the neighborhood is critical. This is the

real ingenuity – not the decision to use hill climbing.

• Question: Pick which neighbor?

• Question: What if no neighbor is better than the

current state?

slide 15

Hill climbing

• Question: What’s a neighbor?

▪ (vaguely) Problems tend to have structures. A small

change produces a neighboring state.

▪ The neighborhood must be small enough for

efficiency

▪ Designing the neighborhood is critical. This is the

real ingenuity – not the decision to use hill climbing.

• Question: Pick which neighbor? The best one (greedy)

• Question: What if no neighbor is better than the

current state? Stop. (Doh!)

slide 16

Hill climbing algorithm

1. Pick initial state s

2. Pick t in neighbors(s) with the largest f(t)

3. IF f(t) f(s) THEN stop, return s

4. s = t. GOTO 2.

• Not the most sophisticated algorithm in the world.

• Very greedy.

• Easily stuck.

slide 17

Hill climbing algorithm

1. Pick initial state s

2. Pick t in neighbors(s) with the largest f(t)

3. IF f(t) f(s) THEN stop, return s

4. s = t. GOTO 2.

• Not the most sophisticated algorithm in the world.

• Very greedy.

• Easily stuck.
your enemy:

local

optima

slide 18

Local optima in hill climbing

• Useful conceptual picture: f surface = ‘hills’ in state
space

• But we can’t see the landscape all at once. Only see

the neighborhood. Climb in fog.

state

f
Global optimum,

where we want to be

state

f
fog

slide 19

Local optima in hill climbing

• Local optima (there can be many!)

• Plateaux

Declare top-
of-the-world?

state

f

state

f
Where shall I go?

slide 20

Local optima in hill climbing

• Local optima (there can be many!)

• Plateaus

fog
Declare top of

the world?

state

f

state

f

fog

Where shall I go?

The rest of the lecture is
about

Escaping

local optima

slide 21

Not every local minimum should be escaped

slide 22

Repeated hill climbing with random restarts

• Very simple modification

1. When stuck, pick a random new start, run basic

hill climbing from there.

2. Repeat this k times.

3. Return the best of the k local optima.

• Can be very effective

• Should be tried whenever hill climbing is used

slide 23

Variations of hill climbing

• Question: How do we make hill climbing less greedy?

slide 24

Variations of hill climbing

• Question: How do we make hill climbing less greedy?

▪ Stochastic hill climbing

• Randomly select among better neighbors

• The better, the more likely

• Pros / cons compared with basic hill climbing?

slide 25

Variations of hill climbing

• Question: How do we make hill climbing less greedy?

▪ Stochastic hill climbing

• Randomly select among better neighbors

• The better, the more likely

• Pros / cons compared with basic hill climbing?

• Question: What if the neighborhood is too large to
enumerate? (e.g. N-queen if we need to pick both the
column and the move within it)

slide 26

Variations of hill climbing

• Question: How do we make hill climbing less greedy?

▪ Stochastic hill climbing

• Randomly select among better neighbors

• The better, the more likely

• Pros / cons compared with basic hill climbing?

• Question: What if the neighborhood is too large to
enumerate? (e.g. N-queen if we need to pick both the
column and the move within it)

▪ First-choice hill climbing

• Randomly generate neighbors, one at a time

• If better, take the move

• Pros / cons compared with basic hill climbing?

slide 27

Variations of hill climbing

• We are still greedy! Only willing to move upwards.

• Important observation in life:

Sometimes one
needs to
temporarily step
back in order to
move forward.

Sometimes one
needs to move to an
inferior neighbor in
order to escape a
local optimum.

=

slide 28

Variations of hill climbing

• Pick a random unsatisfied clause

• Consider 3 neighbors: flip each variable

• If any improves f, accept the best

• If none improves f:

▪ 50% of the time pick the least bad neighbor

▪ 50% of the time pick a random neighbor

A B C

A C D

B D E

C D E

A C E

WALKSAT [Selman]

This is the best known algorithm for
satisfying Boolean formulae.

