Informed Search

Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison

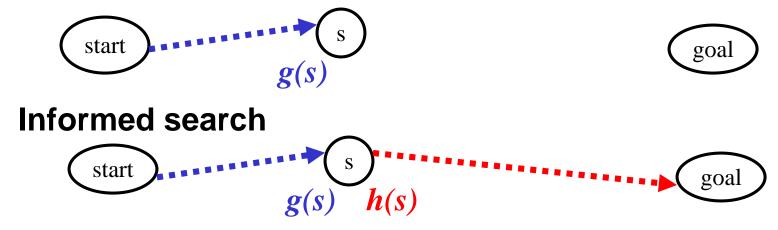
[Based on slides from Jerry Zhu, Andrew Moore http://www.cs.cmu.edu/~awm/tutorials]

Main messages

A*. Always be optimistic.

Uninformed vs. informed search

- Uninformed search (BFS, uniform-cost, DFS, ID etc.)
 - Knows the actual path cost g(s) from start to a node s in the fringe, but that's it.



- also has a heuristic *h(s)* of the cost from *s* to goal. ('h'= heuristic, non-negative)
- Can be much faster than uninformed search.

Recall: Uniform-cost search

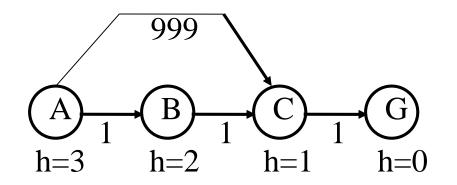
- Uniform-cost search: uninformed search when edge costs are not the same.
- Complete (will find a goal). Optimal (will find the least-cost goal).
- Always expand the node with the least g(s)
 - Use a priority queue:
 - Push in states with their first-half-cost g(s)
 - Pop out the state with the least g(s) first.
- Now we have an estimate of the second-half-cost h(s), how to use it?

start s
$$g(s)$$
 $h(s)$ goal

First attempt: Best-first greedy search

- Idea 1: use h(s) instead of g(s)
- Always expand the node with the least h(s)
 - Use a priority queue:
 - Push in states with their second-half-cost h(s)
 - Pop out the state with the least h(s) first.
- Known as "best first greedy" search
- How's this idea?

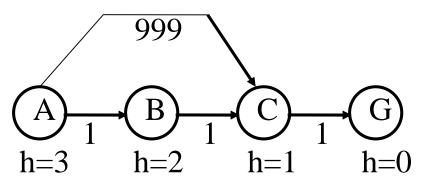
Best-first greedy search looking stupid



- It will follow the path $A \rightarrow C \rightarrow G$ (why?)
- Obviously not optimal

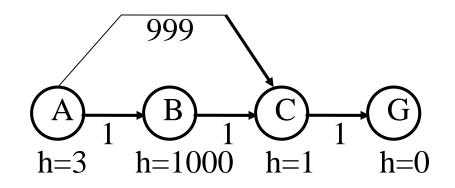
Second attempt: A search

- Idea 2: use g(s) + h(s)
- Always expand the node with the least g(s) + h(s)
 - Use a priority queue:
 - Push in states with their first-half-cost g(s)+h(s)
 - Pop out the state with the least g(s)+h(s) first.
- Known as "A" search
- How's this idea?



Works for this example

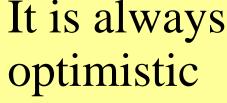
A search still not quite right



A search is not optimal.

Third attempt: A* search

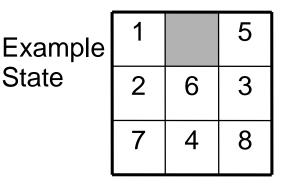
- Same as A search, but the heuristic function h() has to satisfy $h(s) \le h^*(s)$, where $h^*(s)$ is the true cost from node s to the goal.
- Such heuristic function h() is called **admissible**.
 - An admissible heuristic never over-estimates

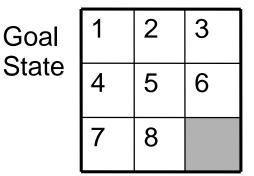


• A search with admissible h() is called A* search.

Admissible heuristic functions h

• 8-puzzle example





- Which of the following are admissible heuristics?
 - •h(n)=number of tiles in wrong position
 - •h(n)=0
 - •h(n)=1
 - •h(n)=sum of Manhattan distance between each tile and its goal location

Admissible heuristic functions h

 In general, which of the following are admissible heuristics? h*(n) is the true optimal cost from n to goal.

•h(n)=h*(n)

• $h(n) = max(2, h^{*}(n))$

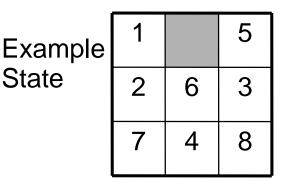
•h(n)=min(2,h*(n))

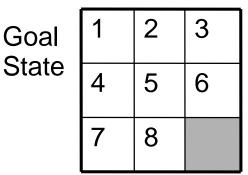
•h(n)=h*(n)-2

•h(n)=sqrt(h*(n))

Heuristics for Admissible heuristics

• How to construct heuristic functions?





- Often by relaxing the constraints
 - h(n)=number of tiles in wrong position
 Allow tiles to fly to their destination in one step
 - •h(n)=sum of Manhattan distance between each tile and its goal location

Allow tiles to move on top of other tiles

"my heuristic is better than yours"

- A heuristic function h2 dominates h1 if for all s h1(s) ≤ h2(s) ≤ h*(s)
- We prefer heuristic functions as close to h* as possible, but not over h*.

But

- Good heuristic function might need complex computation
- Time may be better spent, if we use a faster, simpler heuristic function and expand more nodes