
slide 1

Informed Search

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

[Based on slides from Jerry Zhu, Andrew Moore http://www.cs.cmu.edu/~awm/tutorials]

slide 2

Main messages

• A*. Always be optimistic.

slide 3

Uninformed vs. informed search

• Uninformed search (BFS, uniform-cost, DFS, ID etc.)

▪ Knows the actual path cost g(s) from start to a node s in

the fringe, but that’s it.

• Informed search

▪ also has a heuristic h(s) of the cost from s to goal. (‘h’=

heuristic, non-negative)

▪ Can be much faster than uninformed search.

start
s

goal
g(s)

start s
goal

g(s) h(s)

slide 4

Recall: Uniform-cost search

• Uniform-cost search: uninformed search when edge
costs are not the same.

• Complete (will find a goal). Optimal (will find the

least-cost goal).

• Always expand the node with the least g(s)

▪ Use a priority queue:

• Push in states with their first-half-cost g(s)

• Pop out the state with the least g(s) first.

• Now we have an estimate of the second-half-cost

h(s), how to use it?

start s
goal

g(s) h(s)

slide 5

First attempt: Best-first greedy search

• Idea 1: use h(s) instead of g(s)

• Always expand the node with the least h(s)

▪ Use a priority queue:

• Push in states with their second-half-cost h(s)

• Pop out the state with the least h(s) first.

• Known as “best first greedy” search

• How’s this idea?

slide 6

Best-first greedy search looking stupid

• It will follow the path A→C→G (why?)

• Obviously not optimal

BA GC

h=3 h=2 h=1 h=0
1 1 1

999

slide 7

Second attempt: A search

• Idea 2: use g(s)+h(s)

• Always expand the node with the least g(s)+h(s)

▪ Use a priority queue:

• Push in states with their first-half-cost g(s)+h(s)

• Pop out the state with the least g(s)+h(s) first.

• Known as “A” search

• How’s this idea?

• Works for this example

BA GC

h=3 h=2 h=1 h=0
1 1 1

999

slide 8

A search still not quite right

• A search is not optimal.

BA GC

h=3 h=1000 h=1 h=0
1 1 1

999

slide 9

Third attempt: A* search

• Same as A search, but the heuristic function h() has
to satisfy h(s) h*(s), where h*(s) is the true cost from
node s to the goal.

• Such heuristic function h() is called admissible.

• An admissible heuristic never over-estimates

• A search with admissible h() is called A* search.

It is always
optimistic

slide 10

Admissible heuristic functions h

• 8-puzzle example

• Which of the following are admissible heuristics?

847

362

51

87

654

321
Example
State

Goal
State

•h(n)=number of tiles in wrong position

•h(n)=0

•h(n)=1

•h(n)=sum of Manhattan distance between

each tile and its goal location

slide 12

Admissible heuristic functions h

• In general, which of the following are admissible
heuristics? h*(n) is the true optimal cost from n to
goal.

•h(n)=h*(n)

•h(n)=max(2,h*(n))

•h(n)=min(2,h*(n))

•h(n)=h*(n)-2

•h(n)=sqrt(h*(n))

slide 14

Heuristics for Admissible heuristics

• How to construct heuristic functions?

• Often by relaxing the constraints

847

362

51

87

654

321
Example
State

Goal
State

•h(n)=number of tiles in wrong position

Allow tiles to fly to their destination in one

step

•h(n)=sum of Manhattan distance between

each tile and its goal location

Allow tiles to move on top of other tiles

slide 15

“my heuristic is better than yours”

• A heuristic function h2 dominates h1 if for all s

h1(s) h2(s) h*(s)

• We prefer heuristic functions as close to h* as

possible, but not over h*.

But

• Good heuristic function might need complex

computation

• Time may be better spent, if we use a faster, simpler

heuristic function and expand more nodes

