Informed Search

Yingyu Liang
yliang@cs.wisc.edu
Computer Sciences Department
University of Wisconsin, Madison

[Based on slides from Jerry Zhu, Andrew Moore http://www.cs.cmu.edu/~awm/tutorials]
Main messages

• A*. Always be optimistic.
Uninformed vs. informed search

- **Uninformed search** (BFS, uniform-cost, DFS, ID etc.)
 - Knows the actual path cost $g(s)$ from start to a node s in the fringe, but that’s it.

- **Informed search**
 - also has a heuristic $h(s)$ of the cost from s to goal. (‘h’ = heuristic, non-negative)
 - Can be much faster than uninformed search.
Recall: Uniform-cost search

- Uniform-cost search: uninformed search when edge costs are not the same.
- Complete (will find a goal). Optimal (will find the least-cost goal).
- Always expand the node with the least $g(s)$
 - Use a priority queue:
 - Push in states with their first-half-cost $g(s)$
 - Pop out the state with the least $g(s)$ first.
- Now we have an estimate of the second-half-cost $h(s)$, how to use it?
First attempt: Best-first greedy search

• Idea 1: use $h(s)$ instead of $g(s)$
• Always expand the node with the least $h(s)$
 ▪ Use a priority queue:
 • Push in states with their second-half-cost $h(s)$
 • Pop out the state with the least $h(s)$ first.
• Known as “best first greedy” search
• How’s this idea?
Best-first greedy search looking stupid

- It will follow the path $A \rightarrow C \rightarrow G$ (why?)
- Obviously not optimal
Second attempt: A search

- Idea 2: use \(g(s) + h(s) \)
- Always expand the node with the least \(g(s) + h(s) \)
 - Use a priority queue:
 - Push in states with their first-half-cost \(g(s) + h(s) \)
 - Pop out the state with the least \(g(s) + h(s) \) first.
- Known as “A” search
- How’s this idea?

- Works for this example
A search still not quite right

• A search is not optimal.
Third attempt: A* search

• Same as A search, but the heuristic function $h()$ has to satisfy $h(s) \leq h^*(s)$, where $h^*(s)$ is the true cost from node s to the goal.

• Such heuristic function $h()$ is called **admissible**.
 • An admissible heuristic never over-estimates

 It is always optimistic

• A search with admissible $h()$ is called **A* search**.
Admissible heuristic functions h

- 8-puzzle example

Example State

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

Goal State

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

- Which of the following are admissible heuristics?
 - $h(n)=$number of tiles in wrong position
 - $h(n)=0$
 - $h(n)=1$
 - $h(n)=$sum of Manhattan distance between each tile and its goal location
Admissible heuristic functions h

- In general, which of the following are admissible heuristics? $h^*(n)$ is the true optimal cost from n to goal.
 - $h(n) = h^*(n)$
 - $h(n) = \max(2, h^*(n))$
 - $h(n) = \min(2, h^*(n))$
 - $h(n) = h^*(n) - 2$
 - $h(n) = \sqrt{h^*(n)}$
Heuristics for Admissible heuristics

• How to construct heuristic functions?

Example State

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Goal State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

• Often by relaxing the constraints
 • \(h(n) = \text{number of tiles in wrong position} \)

 Allow tiles to fly to their destination in one step
 • \(h(n) = \text{sum of Manhattan distance between each tile and its goal location} \)

 Allow tiles to move on top of other tiles
“my heuristic is better than yours”

• A heuristic function h_2 **dominates** h_1 if for all s
 $h_1(s) \leq h_2(s) \leq h^*(s)$

• We prefer heuristic functions as close to h^* as possible, but not over h^*.

But

• Good heuristic function might need complex computation

• Time may be better spent, if we use a faster, simpler heuristic function and expand more nodes