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Main messages

• A*.  Always be optimistic.
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A* search

• Same as A search, but the heuristic function h() has 
to satisfy h(s)  h*(s), where h*(s) is the true cost from 
node s to the goal.

• Such heuristic function h() is called admissible.

• An admissible heuristic never over-estimates

• A search with admissible h() is called A* search.

It is always 
optimistic
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Q1: When should A* stop?

• Idea: as soon as it generates the goal state?

• h() is admissible

• The goal G will be generated as path ABG, with 

cost 1000.
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Q1: The correct A* stop rule

• A* should terminate only when a goal is popped from 
the priority queue

• If you have exceedingly good memory, you’ll 

remember this is the same rule for uniform cost 

search on cyclic graphs.

• Indeed A* with h()0 is exactly uniform cost search!
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Q2: A* revisiting expanded states 

• One more complication: A* can revisit an expanded 
state, and discover a shorter path

• Can you find the state in question?
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Q2: A* revisiting expanded states 
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• One more complication: A* can revisit an expanded 
state, and discover a shorter path

• Can you find the state in question?

We shall put D back into the 
priority queue, with the 

smaller g+h
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Q3: What if A* revisits a state in the PQ?

• We’ve seen this before, with uniform cost search

• ‘promote’ D in the queue with the smaller cost
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The A* algorithm
1. Put the start node S on the priority queue, called OPEN

2. If OPEN is empty, exit with failure

3. Remove from OPEN and place on CLOSED a node n for which f(n) is 

minimum

4. If n is a goal node, exit (trace back pointers from n to S)

5. Expand n, generating all its successors and attach to them pointers back 

to n. For each successor n' of n

1. If n' is not already on OPEN or CLOSED estimate h(n'),g(n')=g(n)+ 

c(n,n'), f(n')=g(n')+h(n'), and place it on OPEN.

2. If n' is already on OPEN or CLOSED, then check if g(n') is lower for 

the new version of n'. If so, then:

1. Redirect pointers backward from n' along path yielding lower 

g(n').

2. Put n' on OPEN.

3. If g(n') is not lower for the new version, do nothing. 

6. Goto 2.
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A*: the dark side

• A* can use lots of memory.  

O(number of states)

• For large problems A* will run out of 

memory

• We’ll look at two alternatives:

▪ IDA*

▪ Beam search
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IDA*: iterative deepening A*

• Memory bounded search.  Assume integer costs

– Do path checking DFS, do not expand any node 

with f(n)>0.  Stop if we find a goal.

– Do path checking DFS, do not expand any node 

with f(n)>1.  Stop if we find a goal.

– Do path checking DFS, do not expand any node 

with f(n)>2.  Stop if we find a goal.

– Do path checking DFS, do not expand any node 

with f(n)>3.  Stop if we find a goal.

… repeat this, increase threshold by 1 each time 

until we find a goal.

• This is complete, optimal, but more costly than A* in 

general.
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Beam search

• Very general technique, not just for A*

• The priority queue has a fixed size k.  Only the top k

nodes are kept.  Others are discarded.

• Neither complete nor optimal, nor can maintain an 

‘expanded’ node list, but memory efficient.

• Variation: The priority queue only keeps nodes that 

are at most  worse than the best node in the queue. 

 is the beam width.

• Beam search used successfully in speech 

recognition.
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Example
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Example

OPEN

S(0+8)

A(1+8) B(5+4) C(8+3)

B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)

C(8+3) D(4+inf) E(8+inf) G(10+0) G(9+0)

C(8+3) D(4+inf) E(8+inf) G(10+0)

CLOSED

-

S(0+8)

S(0+8) A(1+8)

S(0+8) A(1+8) B(5+4)

S(0+8) A(1+8) B(5+4) G(9+0)

Backtrack: G => B => S.
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What you should know

• Know why best-first greedy search is bad.

• Thoroughly understand A*

• Trace simple examples of A* execution.

• Understand admissible heuristics.
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Appendix: Proof that A* is optimal

• Suppose A* finds a suboptimal path ending in goal 
G’, where f(G’) > f* = cost of optimal path

• Let’s look at the first unexpanded node n on the 

optimal path (n exists, otherwise the optimal goal 

would have been found)

• f(n)>f(G’), otherwise we would have expanded n

• f(n) = g(n)+h(n) by definition

= g*(n)+h(n) because n is on the optimal path

 g*(n)+h*(n) because h is admissible

= f* because n is on the optimal path

• f*  f(n) > f(G’), contradicting the assumption at top


