
slide 1

Informed Search

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

[Based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials]

slide 2

Main messages

• A*. Always be optimistic.

slide 3

A* search

• Same as A search, but the heuristic function h() has
to satisfy h(s) h*(s), where h*(s) is the true cost from
node s to the goal.

• Such heuristic function h() is called admissible.

• An admissible heuristic never over-estimates

• A search with admissible h() is called A* search.

It is always
optimistic

slide 4

Q1: When should A* stop?

• Idea: as soon as it generates the goal state?

• h() is admissible

• The goal G will be generated as path ABG, with

cost 1000.

B

A G

C

9991

1 1
h=2

h=1

h=0

h=0

slide 5

Q1: The correct A* stop rule

• A* should terminate only when a goal is popped from
the priority queue

• If you have exceedingly good memory, you’ll

remember this is the same rule for uniform cost

search on cyclic graphs.

• Indeed A* with h()0 is exactly uniform cost search!

B

A G

C

9991

1 1
h=2

h=1

h=0

h=0

slide 6

Q2: A* revisiting expanded states

• One more complication: A* can revisit an expanded
state, and discover a shorter path

• Can you find the state in question?

B

A D

C

999

1

1 1
h=1

h=900

h=1

h=1
G

h=0

2

slide 7

Q2: A* revisiting expanded states

B

A D

C

999

1

1 1
h=1

h=900

h=1

h=1
G

h=0

2

• One more complication: A* can revisit an expanded
state, and discover a shorter path

• Can you find the state in question?

We shall put D back into the
priority queue, with the

smaller g+h

slide 8

Q3: What if A* revisits a state in the PQ?

• We’ve seen this before, with uniform cost search

• ‘promote’ D in the queue with the smaller cost

B

A D

C

999

1

2 1
h=3

h=2

h=1

h=2
G

h=0

999

(Note the numbers are different)

slide 9

The A* algorithm
1. Put the start node S on the priority queue, called OPEN

2. If OPEN is empty, exit with failure

3. Remove from OPEN and place on CLOSED a node n for which f(n) is

minimum

4. If n is a goal node, exit (trace back pointers from n to S)

5. Expand n, generating all its successors and attach to them pointers back

to n. For each successor n' of n

1. If n' is not already on OPEN or CLOSED estimate h(n'),g(n')=g(n)+

c(n,n'), f(n')=g(n')+h(n'), and place it on OPEN.

2. If n' is already on OPEN or CLOSED, then check if g(n') is lower for

the new version of n'. If so, then:

1. Redirect pointers backward from n' along path yielding lower

g(n').

2. Put n' on OPEN.

3. If g(n') is not lower for the new version, do nothing.

6. Goto 2.

slide 10

A*: the dark side

• A* can use lots of memory.

O(number of states)

• For large problems A* will run out of

memory

• We’ll look at two alternatives:

▪ IDA*

▪ Beam search

slide 11

IDA*: iterative deepening A*

• Memory bounded search. Assume integer costs

– Do path checking DFS, do not expand any node

with f(n)>0. Stop if we find a goal.

– Do path checking DFS, do not expand any node

with f(n)>1. Stop if we find a goal.

– Do path checking DFS, do not expand any node

with f(n)>2. Stop if we find a goal.

– Do path checking DFS, do not expand any node

with f(n)>3. Stop if we find a goal.

… repeat this, increase threshold by 1 each time

until we find a goal.

• This is complete, optimal, but more costly than A* in

general.

slide 12

Beam search

• Very general technique, not just for A*

• The priority queue has a fixed size k. Only the top k

nodes are kept. Others are discarded.

• Neither complete nor optimal, nor can maintain an

‘expanded’ node list, but memory efficient.

• Variation: The priority queue only keeps nodes that

are at most worse than the best node in the queue.

 is the beam width.

• Beam search used successfully in speech

recognition.

slide 13

Example

S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

Initial stateh=8

h=8 h=4 h=3

h=0h=h=

slide 14

Example

OPEN

S(0+8)

A(1+8) B(5+4) C(8+3)

B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)

C(8+3) D(4+inf) E(8+inf) G(10+0) G(9+0)

C(8+3) D(4+inf) E(8+inf) G(10+0)

CLOSED

-

S(0+8)

S(0+8) A(1+8)

S(0+8) A(1+8) B(5+4)

S(0+8) A(1+8) B(5+4) G(9+0)

Backtrack: G => B => S.

slide 15

What you should know

• Know why best-first greedy search is bad.

• Thoroughly understand A*

• Trace simple examples of A* execution.

• Understand admissible heuristics.

slide 16

Appendix: Proof that A* is optimal

• Suppose A* finds a suboptimal path ending in goal
G’, where f(G’) > f* = cost of optimal path

• Let’s look at the first unexpanded node n on the

optimal path (n exists, otherwise the optimal goal

would have been found)

• f(n)>f(G’), otherwise we would have expanded n

• f(n) = g(n)+h(n) by definition

= g*(n)+h(n) because n is on the optimal path

 g*(n)+h*(n) because h is admissible

= f* because n is on the optimal path

• f* f(n) > f(G’), contradicting the assumption at top

