Introduction to Machine Learning Part 4: Linear Classification

CS 540

Yingyu Liang
Review: machine learning basics
Math formulation

- Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)
- Find \(y = f(x) \in \mathcal{H} \) that minimizes \(\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i) \)
- s.t. the expected loss is small
 \[
 L(f) = \mathbb{E}_{(x, y) \sim D}[l(f, x, y)]
 \]
Machine learning 1-2-3

• Collect data and extract features
• Build model: choose hypothesis class \mathcal{H} and loss function l
• Optimization: minimize the empirical loss
Machine learning 1-2-3

- Collect data and extract features
- Build model: choose hypothesis class \mathcal{H} and loss function l
- Optimization: minimize the empirical loss

Experience

Prior knowledge
Example: Linear regression

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)
• Find \(f_w(x) = w^T x \) that minimizes \(\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \)
Why l_2 loss

• Why not choose another loss
 • l_1 loss, hinge loss, exponential loss, ...
• Empirical: easy to optimize
 • For linear case: $w = (X^T X)^{-1}X^T y$
• Theoretical: a way to encode prior knowledge

Questions:
• What kind of prior knowledge?
• Principal way to derive loss?
Maximum Likelihood Estimation
Maximum Likelihood Estimation (MLE)

• Given training data \(\{(x_i, y_i) : 1 \leq i \leq n\}\) i.i.d. from distribution \(D\)
• Let \(\{P_\theta(x, y) : \theta \in \Theta\}\) be a family of distributions indexed by \(\theta\)

• Would like to pick \(\theta\) so that \(P_\theta(x, y)\) fits the data well
Maximum Likelihood Estimation (MLE)

• Given training data \(\{(x_i, y_i) : 1 \leq i \leq n\}\) i.i.d. from distribution \(D\)
• Let \(\{P_\theta(x, y): \theta \in \Theta\}\) be a family of distributions indexed by \(\theta\)

• “fitness” of \(\theta\) to one data point \((x_i, y_i)\)

 \[
 \text{likelihood}(\theta; x_i, y_i) := P_\theta(x_i, y_i)
 \]
Maximum Likelihood Estimation (MLE)

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\}\) i.i.d. from distribution \(D\)
• Let \(\{P_\theta(x, y): \theta \in \Theta\}\) be a family of distributions indexed by \(\theta\)

• “fitness” of \(\theta\) to i.i.d. data points \(\{(x_i, y_i)\}\)
 \[
 \text{likelihood}(\theta; \{x_i, y_i\}) := P_\theta(\{x_i, y_i\}) = \prod_i P_\theta(x_i, y_i)
 \]
Maximum Likelihood Estimation (MLE)

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)
• Let \(\{P_\theta(x, y): \theta \in \Theta\} \) be a family of distributions indexed by \(\theta \)

• MLE: maximize “fitness” of \(\theta \) to i.i.d. data points \(\{(x_i, y_i)\} \)

\[
\theta_{ML} = \arg \max_{\theta \in \Theta} \prod_i P_\theta(x_i, y_i)
\]
Maximum Likelihood Estimation (MLE)

• Given training data \{ (x_i, y_i) : 1 \leq i \leq n \} i.i.d. from distribution \(D \)
• Let \(\{ P_\theta (x, y) : \theta \in \Theta \} \) be a family of distributions indexed by \(\theta \)

• MLE: maximize “fitness” of \(\theta \) to i.i.d. data points \{ (x_i, y_i) \}

\[\theta_{ML} = \arg \max_{\theta \in \Theta} \log[\prod_i P_\theta (x_i, y_i)] \]

\[\theta_{ML} = \arg \max_{\theta \in \Theta} \sum_i \log[P_\theta (x_i, y_i)] \]
Maximum Likelihood Estimation (MLE)

• Given training data \{ (x_i, y_i) : 1 \leq i \leq n \} i.i.d. from distribution \(D \)
• Let \{ P_\theta (x, y) : \theta \in \Theta \} be a family of distributions indexed by \(\theta \)

• MLE: negative log-likelihood loss

\[
\theta_{ML} = \arg \max_{\theta \in \Theta} \sum_i \log(P_\theta(x_i, y_i))
\]

\[
l(P_\theta, x_i, y_i) = -\log(P_\theta(x_i, y_i))
\]

\[
\hat{L}(P_\theta) = -\sum_i \log(P_\theta(x_i, y_i))
\]
MLE: conditional log-likelihood

• Given training data \{ (x_i, y_i) : 1 \leq i \leq n \} i.i.d. from distribution \(D \)
• Let \(\{ P_{\theta} (y|x) : \theta \in \Theta \} \) be a family of distributions indexed by \(\theta \)
• MLE: negative conditional log-likelihood loss

\[
\theta_{ML} = \arg\max_{\theta \in \Theta} \sum_i \log(P_{\theta} (y_i|x_i))
\]

\[
l(P_{\theta}, x_i, y_i) = - \log(P_{\theta} (y_i|x_i))
\]

\[
\hat{L}(P_{\theta}) = - \sum_i \log(P_{\theta} (y_i|x_i))
\]

Only care about predicting y from x; do not care about p(x)
MLE: conditional log-likelihood

• Given training data \{\((x_i, y_i) : 1 \leq i \leq n \) \} i.i.d. from distribution \(D \)

• Let \(\{ P_\theta(y|x) : \theta \in \Theta \} \) be a family of distributions indexed by \(\theta \)

• MLE: negative conditional log-likelihood loss

\[
\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \sum_i \log(P_\theta(y_i|x_i))
\]

\[
l(P_\theta, x_i, y_i) = -\log(P_\theta(y_i|x_i))
\]

\[
\hat{L}(P_\theta) = -\sum_i \log(P_\theta(y_i|x_i))
\]
Example: l_2 loss

- Given training data $\{(x_i, y_i): 1 \leq i \leq n\}$ i.i.d. from distribution D
- Find $f_\theta(x)$ that minimizes $\hat{L}(f_\theta) = \frac{1}{n} \sum_{i=1}^{n} (f_\theta(x_i) - y_i)^2$
Example: l_2 loss

• Given training data $\{(x_i, y_i): 1 \leq i \leq n\}$ i.i.d. from distribution D

• Find $f_{\theta}(x)$ that minimizes $\hat{L}(f_{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (f_{\theta}(x_i) - y_i)^2$

• Define $P_{\theta}(y|x) = \text{Normal}(y; f_{\theta}(x), \sigma^2)$

• $\log(P_{\theta}(y_i|x_i)) = \frac{-1}{2\sigma^2} (f_{\theta}(x_i) - y_i)^2 - \log(\sigma) - \frac{1}{2} \log(2\pi)$

• $\theta_{ML} = \text{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} (f_{\theta}(x_i) - y_i)^2$
Linear classification
Example 1: image classification

Indoor

outdoor
Example 2: Spam detection

<table>
<thead>
<tr>
<th></th>
<th>#$"</th>
<th>#"Mr."</th>
<th>#"sale"</th>
<th>...</th>
<th>Spam?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email 1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Email 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Email 3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email n</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>New email</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>??</td>
</tr>
</tbody>
</table>
Why classification

• Classification: a kind of summary
• Easy to interpret
• Easy for making decisions
Linear classification

\[w^T x = 0 \]

\[w^T x > 0 \]

\[w^T x < 0 \]
Linear classification: natural attempt

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\}\) i.i.d. from distribution \(D\)

• Hypothesis \(f_w(x) = w^T x\)
 - \(y = 1\) if \(w^T x > 0\)
 - \(y = 0\) if \(w^T x < 0\)

• Prediction: \(y = \text{step}(f_w(x)) = \text{step}(w^T x)\)
Linear classification: natural attempt

• Given training data \{(x_i, y_i): 1 \leq i \leq n\} i.i.d. from distribution \(D\)

• Find \(f_w(x) = w^T x\) to minimize \(\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\text{step}(w^T x_i) \neq y_i]\)

• Drawback: difficult to optimize
 • NP-hard in the worst case

0-1 loss
Linear classification: simple approach

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)

• Find \(f_w(x) = w^T x \) that minimizes \(\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \)

Reduce to linear regression; ignore the fact \(y \in \{0, 1\} \)
Linear classification: logistic regression

- Probabilistic view: try to output the probability distribution $P(y|x)$

\[
P_w(y = 1|x) = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)}
\]

\[
P_w(y = 0|x) = 1 - P_w(y = 1|x) = 1 - \sigma(w^T x)
\]
Sigmoid

• Prediction bounded in \([0,1]\)
• Smooth

• Sigmoid: \(\sigma(a) = \frac{1}{1+\exp(-a)}\)

Figure borrowed from *Pattern Recognition and Machine Learning*, Bishop
Linear classification: logistic regression

- Given training data \(\{(x_i, y_i): 1 \leq i \leq n\}\) i.i.d. from distribution \(D\)
- Find \(w\) that minimizes

\[
\hat{L}(w) = -\frac{1}{n} \sum_{i=1}^{n} \log P_w(y_i|x_i)
\]

\[
\hat{L}(w) = -\frac{1}{n} \sum_{y_i=1} \log \sigma(w^T x_i) - \frac{1}{n} \sum_{y_i=0} \log[1 - \sigma(w^T x_i)]
\]

Logistic regression: MLE with sigmoid
Linear classification: logistic regression

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)
• Find \(w \) that minimizes

\[
\hat{L}(w) = -\frac{1}{n} \sum_{y_i=1} \log \sigma(w^T x_i) - \frac{1}{n} \sum_{y_i=0} \log[1 - \sigma(w^T x_i)]
\]

No close form solution; Need to use gradient descent
Properties of sigmoid function

• Bounded

\[\sigma(a) = \frac{1}{1 + \exp(-a)} \in (0,1) \]

• Symmetric

\[1 - \sigma(a) = \frac{\exp(-a)}{1 + \exp(-a)} = \frac{1}{\exp(a) + 1} = \sigma(-a) \]

• Gradient

\[\sigma'(a) = \frac{\exp(-a)}{(1 + \exp(-a))^2} = \sigma(a)(1 - \sigma(a)) \]