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Review: machine learning basics



Math formulation

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Find 𝑦 = 𝑓(𝑥) ∈ 𝓗 that minimizes 𝐿 𝑓 =
1

𝑛
σ𝑖=1
𝑛 𝑙(𝑓, 𝑥𝑖 , 𝑦𝑖)

• s.t. the expected loss is small

𝐿 𝑓 = 𝔼 𝑥,𝑦 ~𝐷[𝑙(𝑓, 𝑥, 𝑦)]



Machine learning 1-2-3

• Collect data and extract features

• Build model: choose hypothesis class 𝓗 and loss function 𝑙

• Optimization: minimize the empirical loss
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• Collect data and extract features

• Build model: choose hypothesis class 𝓗 and loss function 𝑙

• Optimization: minimize the empirical loss

Experience

Prior knowledge



Example: Linear regression

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Find 𝑓𝑤 𝑥 = 𝑤𝑇𝑥 that minimizes 𝐿 𝑓𝑤 =
1

𝑛
σ𝑖=1
𝑛 𝑤𝑇𝑥𝑖 − 𝑦𝑖

2

𝑙2 loss

Linear model 𝓗



Why 𝑙2 loss

• Why not choose another loss
• 𝑙1 loss, hinge loss, exponential loss, …

• Empirical: easy to optimize
• For linear case: w = 𝑋𝑇𝑋 −1𝑋𝑇𝑦

• Theoretical: a way to encode prior knowledge

Questions:

• What kind of prior knowledge?

• Principal way to derive loss?



Maximum Likelihood Estimation



Maximum Likelihood Estimation (MLE)

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Let {𝑃𝜃 𝑥, 𝑦 : 𝜃 ∈ Θ} be a family of distributions indexed by 𝜃

• Would like to pick 𝜃 so that 𝑃𝜃(𝑥, 𝑦) fits the data well



Maximum Likelihood Estimation (MLE)

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Let {𝑃𝜃 𝑥, 𝑦 : 𝜃 ∈ Θ} be a family of distributions indexed by 𝜃

• “fitness” of 𝜃 to one data point 𝑥𝑖 , 𝑦𝑖
likelihood 𝜃; 𝑥𝑖 , 𝑦𝑖 ≔ 𝑃𝜃(𝑥𝑖 , 𝑦𝑖)
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Maximum Likelihood Estimation (MLE)

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Let {𝑃𝜃 𝑥, 𝑦 : 𝜃 ∈ Θ} be a family of distributions indexed by 𝜃

• MLE: maximize “fitness” of 𝜃 to i.i.d. data points { 𝑥𝑖 , 𝑦𝑖 }

𝜃𝑀𝐿 = argmaxθ∈Θς𝑖 𝑃𝜃(𝑥𝑖 , 𝑦𝑖)



Maximum Likelihood Estimation (MLE)
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• MLE: maximize “fitness” of 𝜃 to i.i.d. data points { 𝑥𝑖 , 𝑦𝑖 }

𝜃𝑀𝐿 = argmaxθ∈Θ log[ς𝑖 𝑃𝜃 𝑥𝑖 , 𝑦𝑖 ]

𝜃𝑀𝐿 = argmaxθ∈Θ σ𝑖 log[𝑃𝜃 𝑥𝑖 , 𝑦𝑖 ]



Maximum Likelihood Estimation (MLE)

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Let {𝑃𝜃 𝑥, 𝑦 : 𝜃 ∈ Θ} be a family of distributions indexed by 𝜃

• MLE: negative log-likelihood loss

𝜃𝑀𝐿 = argmaxθ∈Θ σ𝑖 log(𝑃𝜃 𝑥𝑖 , 𝑦𝑖 )

𝑙 𝑃𝜃 , 𝑥𝑖 , 𝑦𝑖 = − log(𝑃𝜃 𝑥𝑖 , 𝑦𝑖 )

𝐿 𝑃𝜃 = −σ𝑖 log(𝑃𝜃 𝑥𝑖 , 𝑦𝑖 )



MLE: conditional log-likelihood

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Let {𝑃𝜃 𝑦 𝑥 : 𝜃 ∈ Θ} be a family of distributions indexed by 𝜃

• MLE: negative conditional log-likelihood loss

𝜃𝑀𝐿 = argmaxθ∈Θ σ𝑖 log(𝑃𝜃 𝑦𝑖|𝑥𝑖 )

𝑙 𝑃𝜃 , 𝑥𝑖 , 𝑦𝑖 = − log(𝑃𝜃 𝑦𝑖|𝑥𝑖 )

𝐿 𝑃𝜃 = −σ𝑖 log(𝑃𝜃 𝑦𝑖|𝑥𝑖 )

Only care about predicting y 
from x; do not care about p(x)



MLE: conditional log-likelihood

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Let {𝑃𝜃 𝑦 𝑥 : 𝜃 ∈ Θ} be a family of distributions indexed by 𝜃

• MLE: negative conditional log-likelihood loss

𝜃𝑀𝐿 = argmaxθ∈Θ σ𝑖 log(𝑃𝜃 𝑦𝑖|𝑥𝑖 )

𝑙 𝑃𝜃 , 𝑥𝑖 , 𝑦𝑖 = − log(𝑃𝜃 𝑦𝑖|𝑥𝑖 )

𝐿 𝑃𝜃 = −σ𝑖 log(𝑃𝜃 𝑦𝑖|𝑥𝑖 )

P(y|x): discriminative;
P(x,y): generative



Example: 𝑙2 loss

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Find 𝑓𝜃 𝑥 that minimizes 𝐿 𝑓𝜃 =
1

𝑛
σ𝑖=1
𝑛 𝑓𝜃(𝑥𝑖) − 𝑦𝑖

2



Example: 𝑙2 loss

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Find 𝑓𝜃 𝑥 that minimizes 𝐿 𝑓𝜃 =
1

𝑛
σ𝑖=1
𝑛 𝑓𝜃(𝑥𝑖) − 𝑦𝑖

2

• Define 𝑃𝜃 𝑦 𝑥 = Normal 𝑦; 𝑓𝜃 𝑥 , 𝜎2

• log(𝑃𝜃 𝑦𝑖|𝑥𝑖 ) =
−1

2𝜎2
(𝑓𝜃 𝑥𝑖 − 𝑦𝑖)

2−log(𝜎) −
1

2
log(2𝜋)

• 𝜃𝑀𝐿 = argminθ∈Θ
1

𝑛
σ𝑖=1
𝑛 𝑓𝜃(𝑥𝑖) − 𝑦𝑖

2

𝑙2 loss: Normal + MLE



Linear classification



Example 1: image classification

indoor outdoorIndoor



Example 2: Spam detection 

#”$” #”Mr.” #”sale” … Spam?

Email 1 2 1 1 Yes

Email 2 0 1 0 No

Email 3 1 1 1 Yes

…

Email n 0 0 0 No

New email 0 0 1 ??



Why classification

• Classification: a kind of summary

• Easy to interpret 

• Easy for making decisions



Linear classification 𝑤𝑇𝑥 = 0

Class 1

Class 0

𝑤

𝑤𝑇𝑥 > 0

𝑤𝑇𝑥 < 0



Linear classification: natural attempt

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Hypothesis 𝑓𝑤 𝑥 = 𝑤𝑇𝑥
• 𝑦 = 1 if 𝑤𝑇𝑥 > 0

• 𝑦 = 0 if 𝑤𝑇𝑥 < 0

• Prediction: 𝑦 = step(𝑓𝑤 𝑥 ) = step(𝑤𝑇𝑥)

Linear model 𝓗



Linear classification: natural attempt

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Find 𝑓𝑤 𝑥 = 𝑤𝑇𝑥 to minimize 𝐿 𝑓𝑤 =
1

𝑛
σ𝑖=1
𝑛 𝕀[step(𝑤𝑇𝑥𝑖) ≠ 𝑦𝑖]

• Drawback: difficult to optimize
• NP-hard in the worst case 0-1 loss



Linear classification: simple approach

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Find 𝑓𝑤 𝑥 = 𝑤𝑇𝑥 that minimizes 𝐿 𝑓𝑤 =
1

𝑛
σ𝑖=1
𝑛 𝑤𝑇𝑥𝑖 − 𝑦𝑖

2

Reduce to linear regression; 

ignore the fact 𝑦 ∈ {0,1}



Linear classification: logistic regression

• Probabilistic view: try to output the probability distribution 𝑃(𝑦|𝑥)

𝑃𝑤(𝑦 = 1|𝑥) = 𝜎 𝑤𝑇𝑥 =
1

1 + exp(−𝑤𝑇𝑥)

𝑃𝑤 𝑦 = 0 𝑥 = 1 − 𝑃𝑤 𝑦 = 1 𝑥 = 1 − 𝜎 𝑤𝑇𝑥



Sigmoid

• Prediction bounded in [0,1]

• Smooth

• Sigmoid: 𝜎 𝑎 =
1

1+exp(−𝑎)

Figure borrowed from Pattern Recognition and Machine Learning, Bishop



Linear classification: logistic regression

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Find 𝑤 that minimizes

𝐿 𝑤 = −
1

𝑛


𝑖=1

𝑛

log 𝑃𝑤 𝑦𝑖 𝑥𝑖

𝐿 𝑤 = −
1

𝑛


𝑦𝑖=1

log𝜎(𝑤𝑇𝑥𝑖) −
1

𝑛


𝑦𝑖=0

log[1 − 𝜎 𝑤𝑇𝑥𝑖 ]

Logistic regression:

MLE with sigmoid



Linear classification: logistic regression

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Find 𝑤 that minimizes

𝐿 𝑤 = −
1

𝑛


𝑦𝑖=1

log𝜎(𝑤𝑇𝑥𝑖) −
1

𝑛


𝑦𝑖=0

log[1 − 𝜎 𝑤𝑇𝑥𝑖 ]

No close form solution;
Need to use gradient descent



Properties of sigmoid function

• Bounded

𝜎 𝑎 =
1

1 + exp(−𝑎)
∈ (0,1)

• Symmetric

1 − 𝜎 𝑎 =
exp −𝑎

1 + exp −𝑎
=

1

exp 𝑎 + 1
= 𝜎(−𝑎)

• Gradient

𝜎′(𝑎) =
exp −𝑎

1 + exp −𝑎 2
= 𝜎(𝑎)(1 − 𝜎 𝑎 )


