Introduction to Machine Learning Part 4: Linear Classification

CS 540

Yingyu Liang

Review: machine learning basics

Math formulation

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ that minimizes $\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
- s.t. the expected loss is small

 $L(f) = \mathbb{E}_{(x,y)\sim D}[l(f, x, y)]$

Machine learning 1-2-3

- Collect data and extract features
- Build model: choose hypothesis class ${m {\cal H}}$ and loss function l
- Optimization: minimize the empirical loss

Machine learning 1-2-3

Experience

- Collect data and extract features
- Build model: choose hypothesis class ${\cal H}$ and loss function l
- Optimization: minimize the empirical loss

Prior knowledge

Example: Linear regression

• Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D

Why l_2 loss

- Why not choose another loss
 - l_1 loss, hinge loss, exponential loss, ...
- Empirical: easy to optimize
 - For linear case: $w = (X^T X)^{-1} X^T y$
- Theoretical: a way to encode prior knowledge

Questions:

- What kind of prior knowledge?
- Principal way to derive loss?

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Let $\{P_{\theta}(x, y): \theta \in \Theta\}$ be a family of distributions indexed by θ
- Would like to pick θ so that $P_{\theta}(x, y)$ fits the data well

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Let $\{P_{\theta}(x, y): \theta \in \Theta\}$ be a family of distributions indexed by θ
- "fitness" of θ to one data point (x_i, y_i) likelihood $(\theta; x_i, y_i) \coloneqq P_{\theta}(x_i, y_i)$

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Let $\{P_{\theta}(x, y): \theta \in \Theta\}$ be a family of distributions indexed by θ
- "fitness" of θ to i.i.d. data points $\{(x_i, y_i)\}$ likelihood $(\theta; \{x_i, y_i\}) \coloneqq P_{\theta}(\{x_i, y_i\}) = \prod_i P_{\theta}(x_i, y_i)$

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Let $\{P_{\theta}(x, y): \theta \in \Theta\}$ be a family of distributions indexed by θ
- MLE: maximize "fitness" of θ to i.i.d. data points $\{(x_i, y_i)\}\$ $\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \prod_i P_{\theta}(x_i, y_i)$

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Let $\{P_{\theta}(x, y): \theta \in \Theta\}$ be a family of distributions indexed by θ
- MLE: maximize "fitness" of θ to i.i.d. data points $\{(x_i, y_i)\}\$ $\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \log[\prod_i P_{\theta}(x_i, y_i)]$

 $\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \sum_{i} \log[P_{\theta}(x_i, y_i)]$

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Let $\{P_{\theta}(x, y): \theta \in \Theta\}$ be a family of distributions indexed by θ
- MLE: negative log-likelihood loss

 $\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \sum_{i} \log(P_{\theta}(x_i, y_i))$

$$l(P_{\theta}, x_i, y_i) = -\log(P_{\theta}(x_i, y_i))$$
$$\hat{L}(P_{\theta}) = -\sum_i \log(P_{\theta}(x_i, y_i))$$

MLE: conditional log-likelihood

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Let $\{P_{\theta}(y|x): \theta \in \Theta\}$ be a family of distributions indexed by θ
- MLE: negative conditional log-likelihood loss $\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \sum_{i} \log(P_{\theta}(y_{i}|x_{i}))$

Only care about predicting y from x; do not care about p(x)

 $l(P_{\theta}, x_i, y_i) = -\log(P_{\theta}(y_i|x_i))$ $\hat{L}(P_{\theta}) = -\sum_i \log(P_{\theta}(y_i|x_i))$

MLE: conditional log-likelihood

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Let $\{P_{\theta}(y|x): \theta \in \Theta\}$ be a family of distributions indexed by θ
- MLE: negative conditional log-likelihood loss $\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \sum_{i} \log(P_{\theta}(y_{i}|x_{i}))$

P(y|x): discriminative; P(x,y): generative

 $l(P_{\theta}, x_i, y_i) = -\log(P_{\theta}(y_i|x_i))$ $\hat{L}(P_{\theta}) = -\sum_i \log(P_{\theta}(y_i|x_i))$

Example: l_2 loss

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $f_{\theta}(x)$ that minimizes $\hat{L}(f_{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (f_{\theta}(x_i) y_i)^2$

Example: l_2 loss

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $f_{\theta}(x)$ that minimizes $\hat{L}(f_{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (f_{\theta}(x_i) y_i)^2$

 l_2 loss: Normal + MLE

- Define $P_{\theta}(y|x) = \text{Normal}(y; f_{\theta}(x), \sigma^2)$
- $\log(P_{\theta}(y_i|x_i)) = \frac{-1}{2\sigma^2}(f_{\theta}(x_i) y_i)^2 \log(\sigma) \frac{1}{2}\log(2\pi)$

•
$$\theta_{ML} = \operatorname{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} (f_{\theta}(x_i) - y_i)^2$$

Linear classification

Example 1: image classification

Indoor

outdoor

Example 2: Spam detection

	#"\$"	#"Mr."	#"sale"	 Spam?
Email 1	2	1	1	Yes
Email 2	0	1	0	No
Email 3	1	1	1	Yes
Email n	0	0	0	No
New email	0	0	1	??

Why classification

- Classification: a kind of summary
- Easy to interpret
- Easy for making decisions

Linear classification: natural attempt

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Hypothesis $f_w(x) = w^T x$ • y = 1 if $w^T x > 0$ • y = 0 if $w^T x < 0$

Linear model ${oldsymbol{\mathcal{H}}}$

• Prediction: $y = \operatorname{step}(f_w(x)) = \operatorname{step}(w^T x)$

Linear classification: natural attempt

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $f_w(x) = w^T x$ to minimize $\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}[\operatorname{step}(w^T x_i) \neq y_i]$
- Drawback: difficult to optimize
 - NP-hard in the worst case

0-1 loss

Linear classification: simple approach

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $f_w(x) = w^T x$ that minimizes $\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i y_i)^2$

Reduce to linear regression; ignore the fact $y \in \{0,1\}$

Linear classification: logistic regression

• Probabilistic view: try to output the probability distribution P(y|x) $P_w(y = 1|x) = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)}$

$$P_w(y = 0|x) = 1 - P_w(y = 1|x) = 1 - \sigma(w^T x)$$

Sigmoid

Figure borrowed from Pattern Recognition and Machine Learning, Bishop

Linear classification: logistic regression

• Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D

22

• Find *w* that minimizes

$$\hat{L}(w) = -\frac{1}{n} \sum_{i=1}^{n} \log P_w(y_i | x_i)$$
$$\hat{L}(w) = -\frac{1}{n} \sum_{y_i=1} \log \sigma(w^T x_i) - \frac{1}{n} \sum_{y_i=0} \log[1 - \sigma(w^T x_i)]$$
$$\text{Logistic regression:}$$
MLE with sigmoid

Linear classification: logistic regression

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find *w* that minimizes

$$\hat{L}(w) = -\frac{1}{n} \sum_{y_i=1} \log \sigma(w^T x_i) - \frac{1}{n} \sum_{y_i=0} \log[1 - \sigma(w^T x_i)]$$
No close form solution;
Need to use gradient descent

Properties of sigmoid function

Bounded

$$\sigma(a) = \frac{1}{1 + \exp(-a)} \in (0,1)$$

• Symmetric

$$1 - \sigma(a) = \frac{\exp(-a)}{1 + \exp(-a)} = \frac{1}{\exp(a) + 1} = \sigma(-a)$$

• Gradient

$$\sigma'(a) = \frac{\exp(-a)}{(1 + \exp(-a))^2} = \sigma(a)(1 - \sigma(a))$$