Neural Networks Part 3

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department University of Wisconsin, Madison

Convolutional neural networks

- Strong empirical application performance
- Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers

 $h = \sigma(W^T x + b)$

for a specific kind of weight matrix W

Convolution

Convolution: discrete version

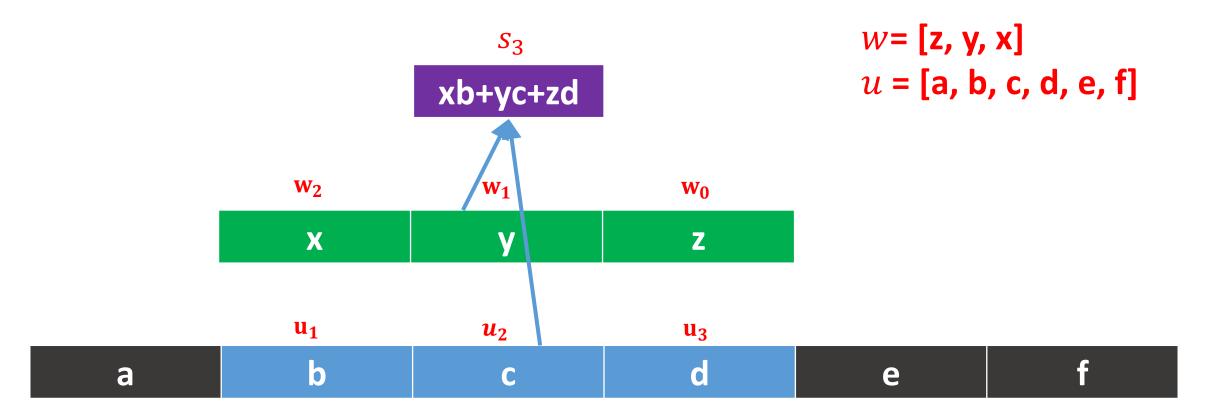
• Given array u_t and w_t , their convolution is a function s_t

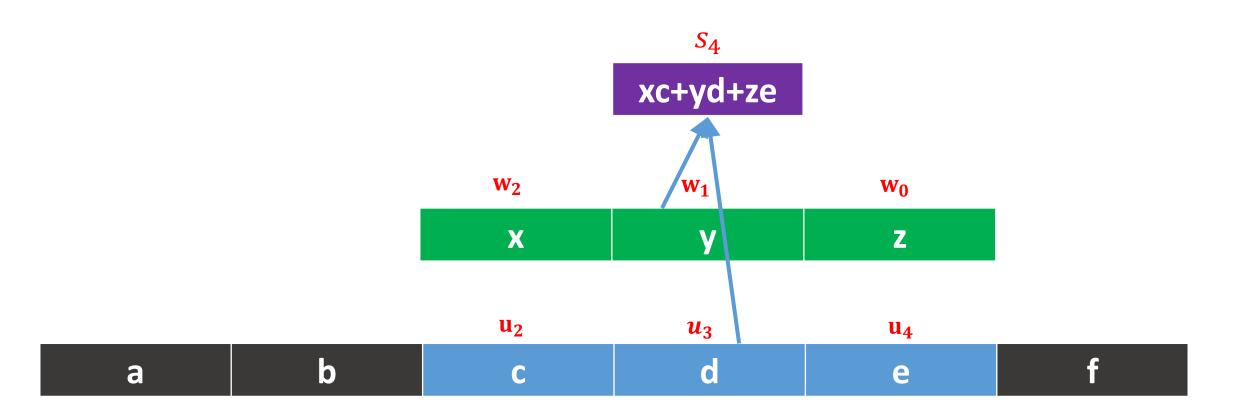
$$s_t = \sum_{a=-\infty}^{+\infty} u_a w_{t-a}$$

• Written as

$$s = (u * w)$$
 or $s_t = (u * w)_t$

• When u_t or w_t is not defined, assumed to be 0





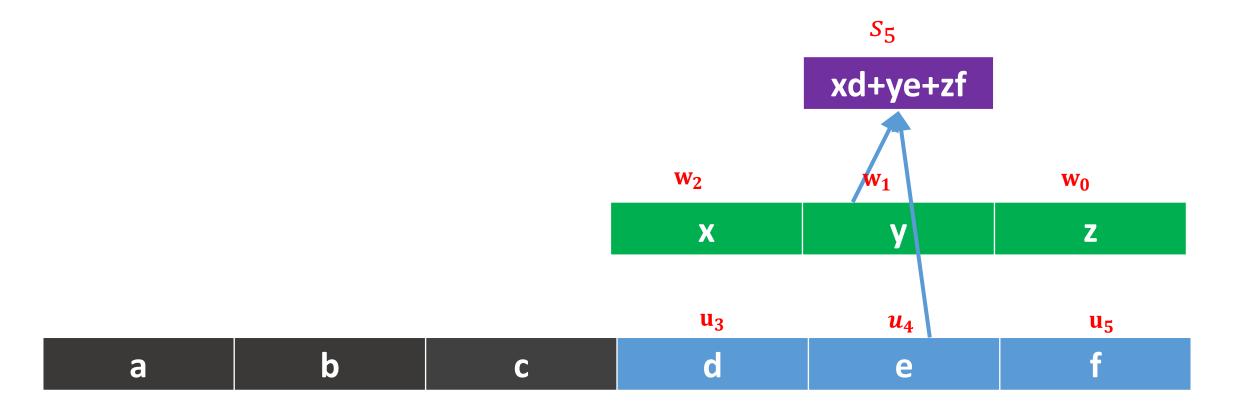


Illustration 1: boundary case

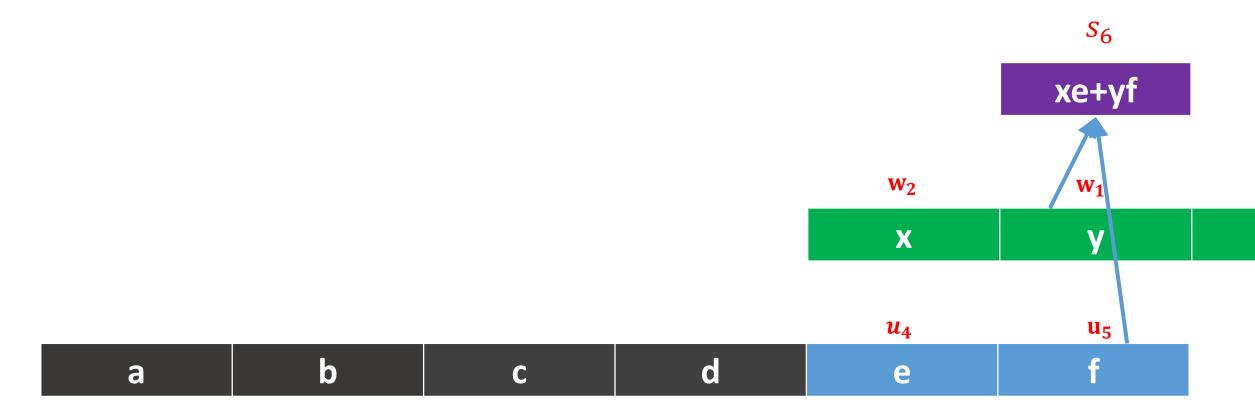


Illustration 1 as matrix multiplication

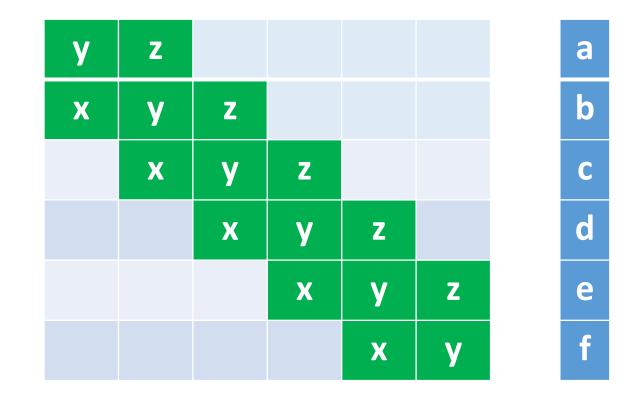
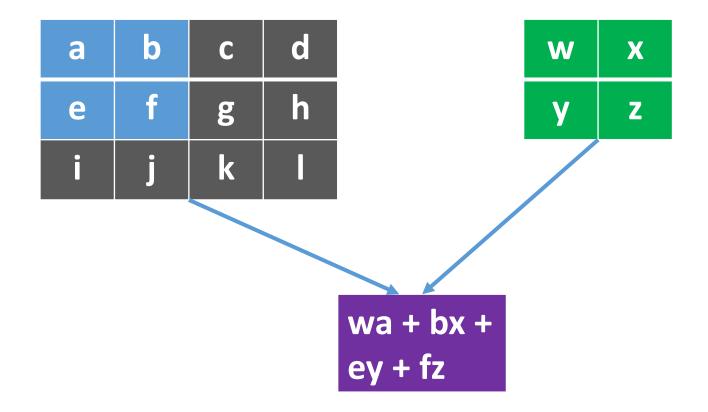
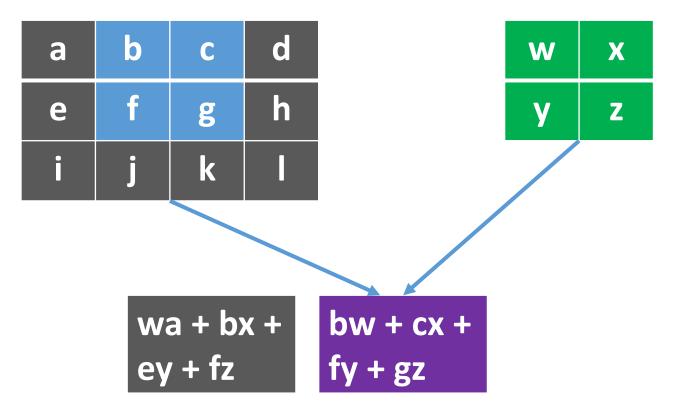
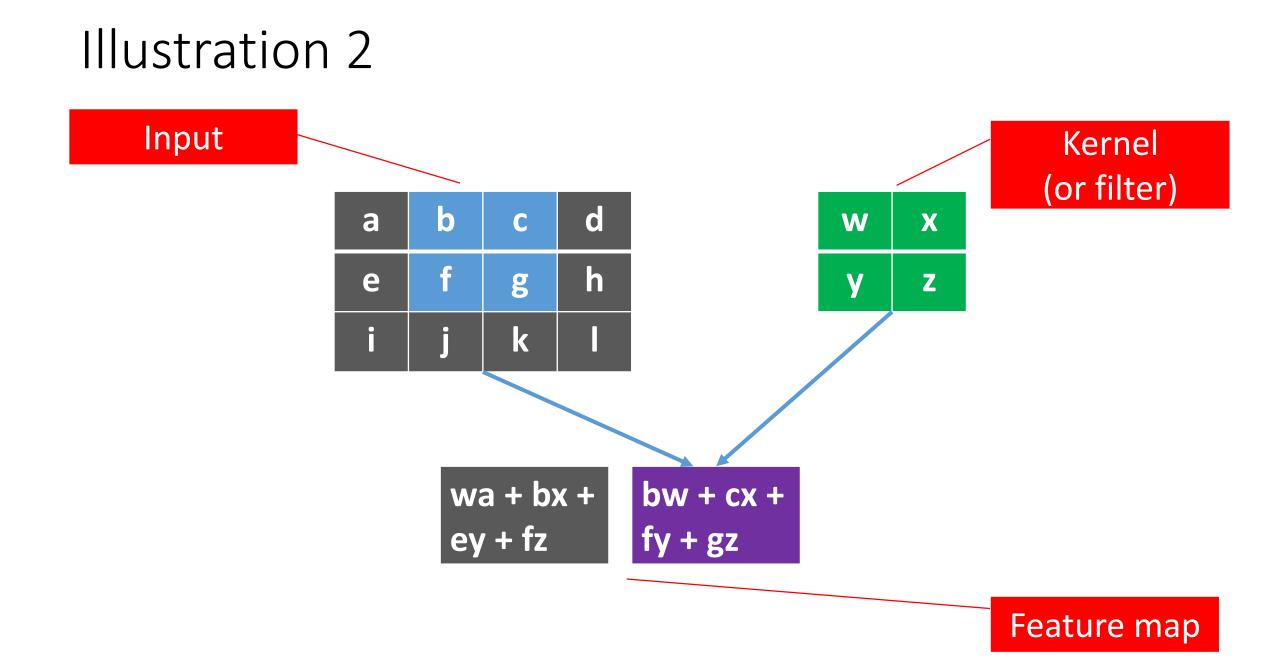


Illustration 2: two dimensional case

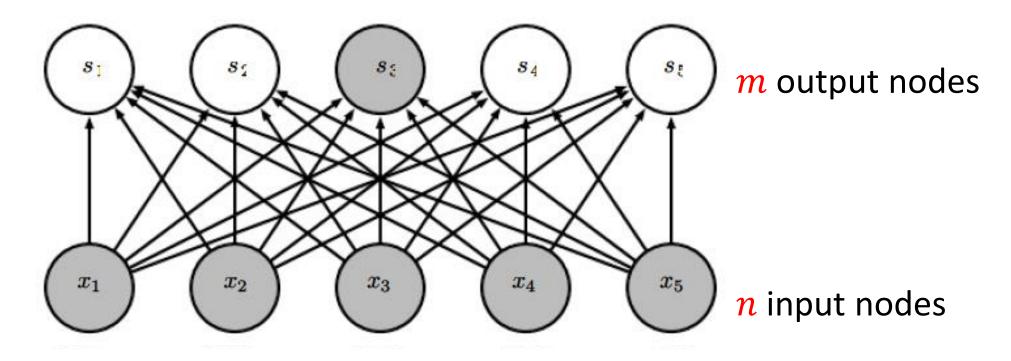






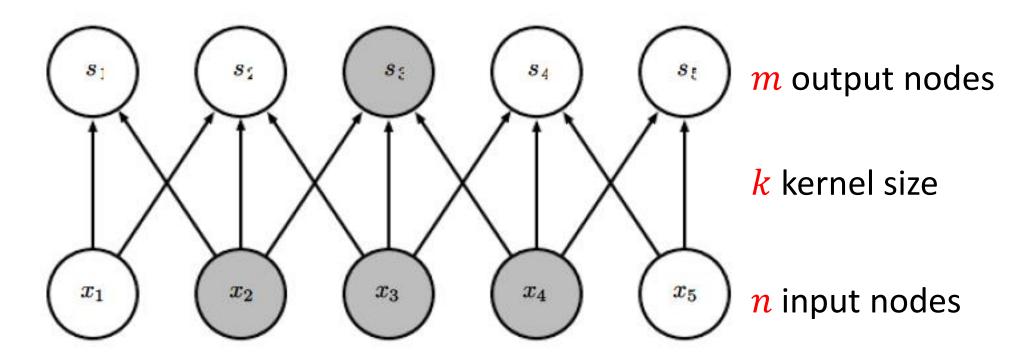
Advantage: sparse interaction

Fully connected layer, $m \times n$ edges



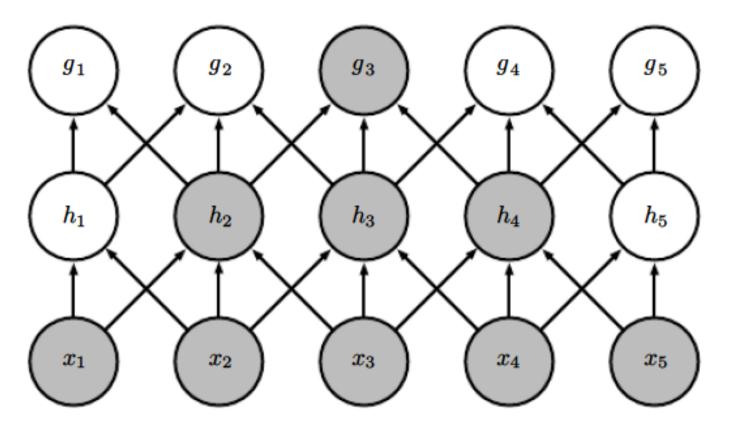
Advantage: sparse interaction

Convolutional layer, $\leq m \times k$ edges

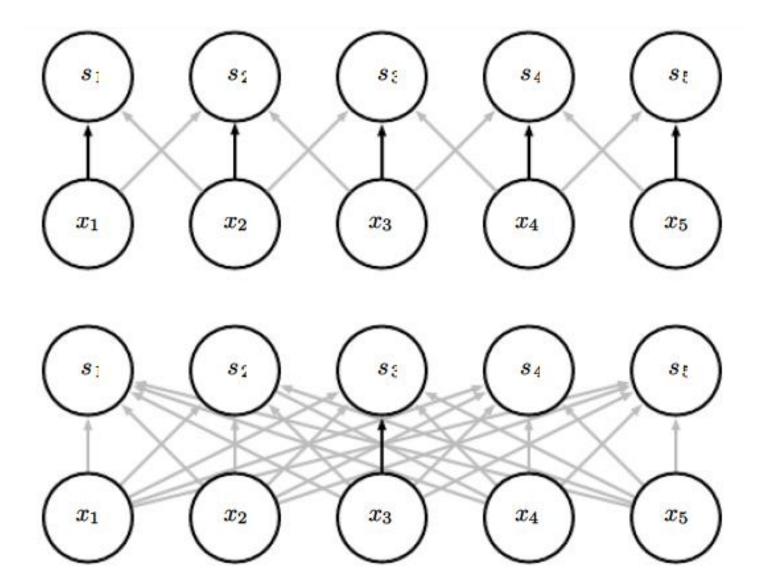


Advantage: sparse interaction

Multiple convolutional layers: larger receptive field



Advantage: parameter sharing



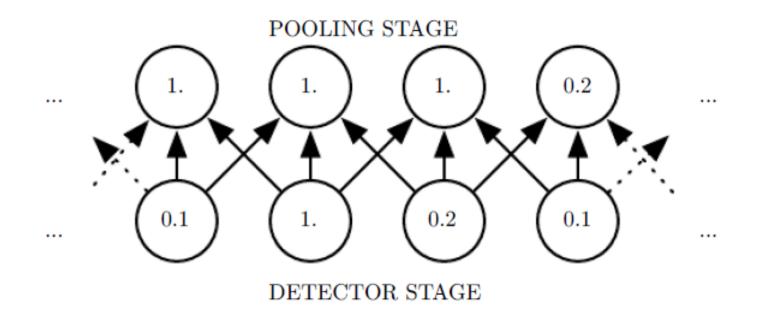
The same kernel are used repeatedly. E.g., the black edge is the same weight in the kernel.

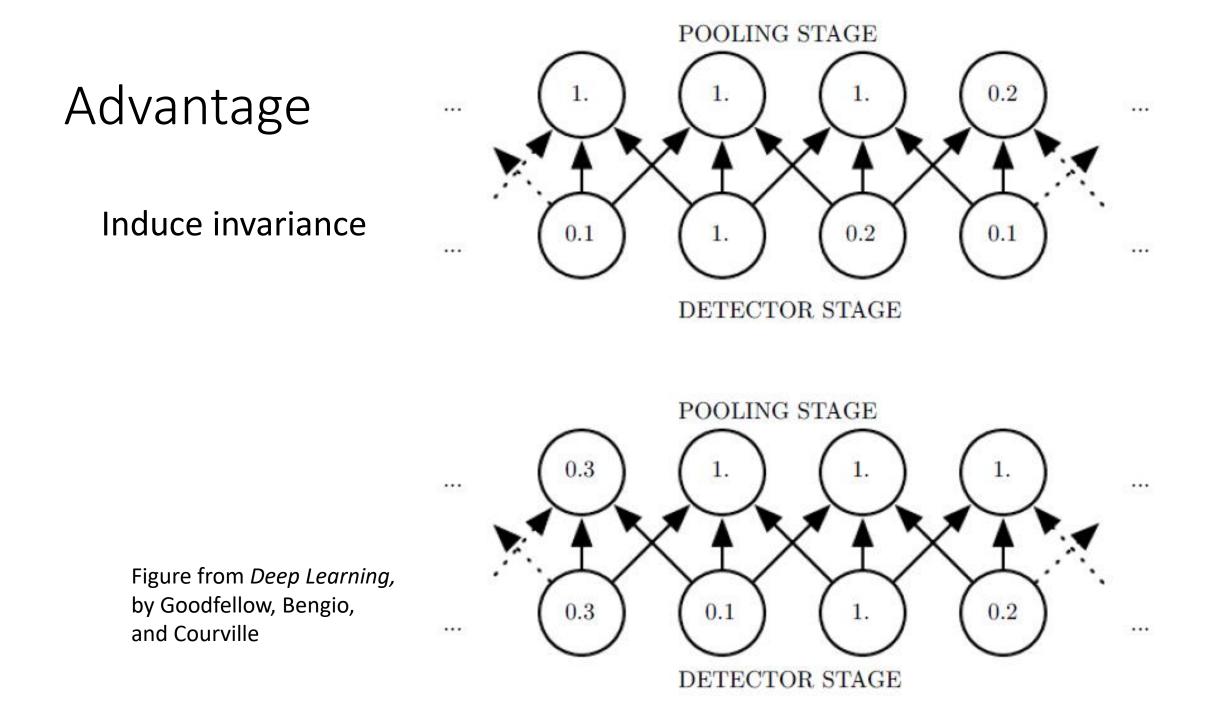
Advantage: equivariant representations

- Equivariant: transforming the input = transforming the output
- Example: input is an image, transformation is shifting
- Convolution(shift(input)) = shift(Convolution(input))
- Useful when care only about the existence of a pattern, rather than the location

Pooling

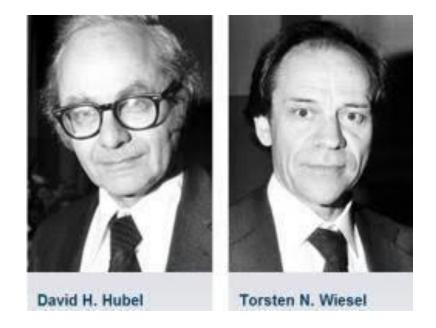
• Summarizing the input (i.e., output the max of the input)





Motivation from neuroscience

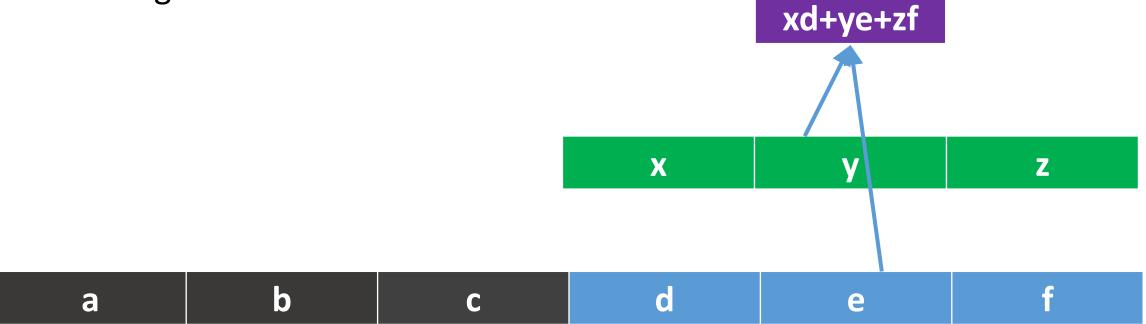
- David Hubel and Torsten Wiesel studied early visual system in human brain (V1 or primary visual cortex), and won Nobel prize for this
- V1 properties
 - 2D spatial arrangement
 - Simple cells: inspire convolution layers
 - Complex cells: inspire pooling layers



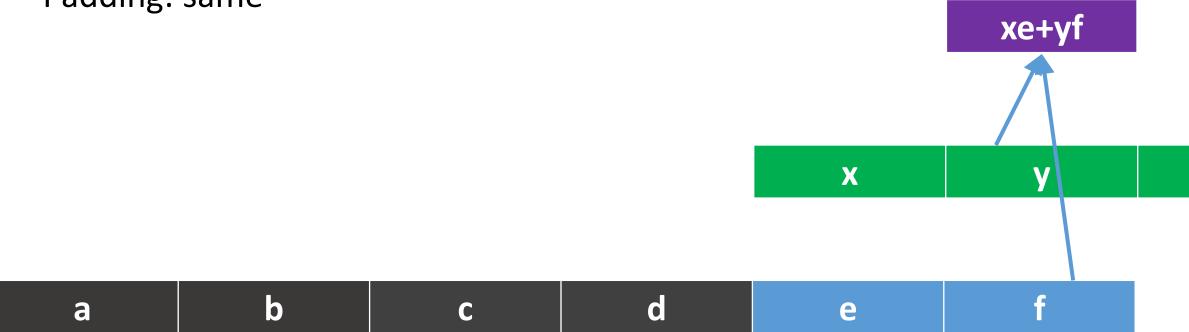
Variants of convolution and pooling

- Multiple dimensional convolution
- Input and kernel can be 3D
 - E.g., images have (width, height, RBG channels)
- Multiple kernels lead to multiple feature maps (also called channels)
- Mini-batch of images have 4D: (image_id, width, height, RBG channels)

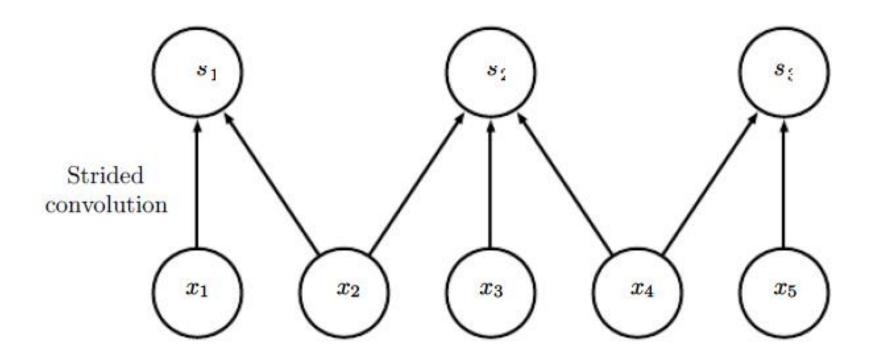
• Padding: valid



• Padding: same

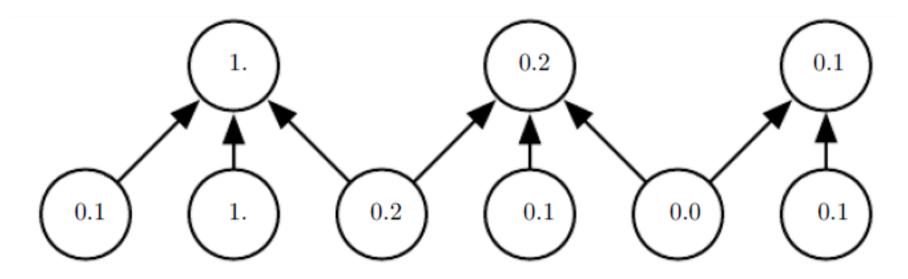


• Stride



Variants of pooling

• Stride and padding



Variants of pooling

- Max pooling $y = \max\{x_1, x_2, ..., x_k\}$
- Average pooling $y = mean\{x_1, x_2, \dots, x_k\}$
- Others like max-out

Case study: LeNet-5

• Proposed in "Gradient-based learning applied to document recognition", by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998

- Proposed in "Gradient-based learning applied to document recognition", by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998
- Apply convolution on 2D images (MNIST) and use backpropagation

- Proposed in "Gradient-based learning applied to document recognition", by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998
- Apply convolution on 2D images (MNIST) and use backpropagation
- Structure: 2 convolutional layers (with pooling) + 3 fully connected layers
 - Input size: 32x32x1
 - Convolution kernel size: 5x5
 - Pooling: 2x2

