Natural Language Processing Basics

Yingyu Liang

University of Wisconsin-Madison

Natural language Processing (NLP)

- The processing of the human languages by computers
- One of the oldest AI tasks
- One of the most important AI tasks
- One of the hottest AI tasks nowadays

Difficulty

- Difficulty 1: ambiguous, typically no formal description
- Example: "We saw her duck."

How many different meanings?

Difficulty

- Difficulty 1: ambiguous, typically no formal description
- Example: "We saw her duck."
- 1. We looked at a duck that belonged to her.
- 2. We looked at her quickly squat down to avoid something.
- 3. We use a saw to cut her duck.

Difficulty

- Difficulty 2: computers do not have human concepts
- Example: "She like little animals. For example, yesterday we saw her duck."
- 1. We looked at a duck that belonged to her.
- 2. We looked at her quickly squat down to avoid something.
- 3. We use a saw to cut her duck.

Words

Preprocess

Zipf's Law

Preprocess

- Corpus: often a set of text documents
- Tokenization or text normalization: turn corpus into sequence(s) of tokens
- 1. Remove unwanted stuff: HTML tags, encoding tags
- 2. Determine word boundaries: usually white space and punctuations
 - Sometimes can be tricky, like Ph.D.

Preprocess

- Tokenization or text normalization: turn data into sequence(s) of tokens
- 1. Remove unwanted stuff: HTML tags, encoding tags
- 2. Determine word boundaries: usually white space and punctuations
 - Sometimes can be tricky, like Ph.D.
- 3. Remove stopwords: the, of, a, with, ...

Preprocess

- Tokenization or text normalization: turn data into sequence(s) of tokens
- 1. Remove unwanted stuff: HTML tags, encoding tags
- 2. Determine word boundaries: usually white space and punctuations
 - Sometimes can be tricky, like Ph.D.
- 3. Remove stopwords: the, of, a, with, ...
- 4. Case folding: lower-case all characters.
 - Sometimes can be tricky, like US and us
- 5. Stemming/Lemmatization (optional): looks, looked, looking \rightarrow look

Vocabulary

Given the preprocessed text

- Word token: occurrences of a word
- Word type: unique word as a dictionary entry (i.e., unique tokens)
- Vocabulary: the set of word types
 - Often 10k to 1 million on different corpora
 - Often remove too rare words

Zipf's Law

- Word count f, word rank r
- Zipf's law: $f * r \approx \text{constant}$

Word	Count f	$\operatorname{rank} r$	fr
the	3332	1	3332
and	2972	2	5944
a	1775	3	5235
he	877	10	8770
\mathbf{but}	410	20	8400
be	294	30	8820
there	222	40	8880
one	172	50	8600
two	104	100	10400
turned	51	200	10200
comes	16	500	8000
family	8	1000	8000
brushed	4	2000	8000
Could	2	4000	8000
Applausive	1	8000	8000

Zipf's law on the corpus Tom Sawyer

Text: Bag-of-Words Representation

Bag-of-Words

tf-idf

Bag-of-Words

How to represent a piece of text (sentence/document) as numbers?

- Let *m* denote the size of the vocabulary
- Given a document d, let c(w, d) denote the #occurrence of w in d
- Bag-of-Words representation of the document

 $v_d = [c(w_1, d), c(w_2, d), \dots, c(w_m, d)]/Z_d$

• Often $Z_d = \sum_w c(w, d)$

Example

- Preprocessed text: this is a good sentence this is another good sentence
- BoW representation: $[c('a',d)/Z_d, c('is',d)/Z_d, ..., c('example',d)/Z_d]$
- What is Z_d ?
- What is $c(a', d)/Z_d$?
- What is $c('example', d)/Z_d$?

tf-idf

• tf: normalized term frequency

$$tf_w = \frac{c(w,d)}{\max_v c(v,d)}$$

- idf: inverse document frequency $idf_w = \log \frac{\text{total #doucments}}{\text{#documents containing } w}$
- tf-idf: tf- $idf_w = tf_w * idf_w$
- Representation of the document

$$v_d = [tf - idf_{w_1}, tf - idf_{w_2}, \dots, tf - idf_{w_m}]$$

Cosine Similarity

How to measure similarities between pieces of text?

- Given the document vectors, can use any similarity notion on vectors
- Commonly used in NLP: cosine of the angle between the two vectors

$$sim(x, y) = \frac{x^{\top} y}{\sqrt{x^{\top} x} \sqrt{y^{\top} y}}$$

Text: statistical Language Model

Statistical language model

N-gram

Smoothing

Probabilistic view

- Use probabilistic distribution to model the language
- Dates back to Shannon (information theory; bits in the message)

Statistical language model

- Language model: probability distribution over sequences of tokens
- Typically, tokens are words, and distribution is discrete
- Tokens can also be characters or even bytes
- Sentence: "the quick brown fox jumps over the lazy dog" Tokens: x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9

Statistical language model

• For simplification, consider fixed length sequence of tokens (sentence)

 $(x_1, x_2, x_3, \dots, x_{\tau-1}, x_{\tau})$

• Probabilistic model:

P [$x_1, x_2, x_3, ..., x_{\tau-1}, x_{\tau}$]

Unigram model

• Unigram model: define the probability of the sequence as the product of the probabilities of the tokens in the sequence

$$P[x_1, x_2, ..., x_{\tau}] = \prod_{t=1}^{\tau} P[x_t]$$

• Independence!

A simple unigram example

• Sentence: "the dog ran away"

 $\hat{P}[the \ dog \ ran \ away] = \hat{P}[the] \ \hat{P}[dog] \ \hat{P}[ran] \ \hat{P}[away]$

• How to estimate $\hat{P}[the]$ on the training corpus?

A simple unigram example

• Sentence: "the dog ran away"

 $\hat{P}[the \ dog \ ran \ away] = \hat{P}[the] \ \hat{P}[dog] \ \hat{P}[ran] \ \hat{P}[away]$

• How to estimate $\hat{P}[the]$ on the training corpus?

Word	Count f
the	3332
and	2972
a	1775
he	877
\mathbf{but}	410
be	294
there	222
one	172

n-gram model

- *n*-gram: sequence of *n* tokens
- *n*-gram model: define the conditional probability of the *n*-th token given the preceding n 1 tokens

$$P[x_1, x_2, \dots, x_{\tau}] = P[x_1, \dots, x_{n-1}] \prod_{t=n}^{\tau} P[x_t | x_{t-n+1}, \dots, x_{t-1}]$$

n-gram model

- *n*-gram: sequence of *n* tokens
- *n*-gram model: define the conditional probability of the *n*-th token given the preceding n 1 tokens

$$P[x_1, x_2, \dots, x_{\tau}] = P[x_1, \dots, x_{n-1}] \prod_{t=n}^{\tau} P[x_t | x_{t-n+1}, \dots, x_{t-1}]$$

Markovian assumptions

Typical *n*-gram model

- n = 1: unigram
- n = 2: bigram
- n = 3: trigram

Training *n*-gram model

• Straightforward counting: counting the co-occurrence of the grams

For all grams $(x_{t-n+1}, \dots, x_{t-1}, x_t)$

- 1. count and estimate $\hat{P}[x_{t-n+1}, ..., x_{t-1}, x_t]$
- 2. count and estimate $\hat{P}[x_{t-n+1}, ..., x_{t-1}]$
- 3. compute

$$\widehat{P}[x_t | x_{t-n+1}, \dots, x_{t-1}] = \frac{\widehat{P}[x_{t-n+1}, \dots, x_{t-1}, x_t]}{\widehat{P}[x_{t-n+1}, \dots, x_{t-1}]}$$

A simple trigram example

• Sentence: "the dog ran away"

 $\hat{P}[the \ dog \ ran \ away] = \hat{P}[the \ dog \ ran] \ \hat{P}[away|dog \ ran]$

 $\hat{P}[the \ dog \ ran \ away] = \hat{P}[the \ dog \ ran] \frac{\hat{P}[dog \ ran \ away]}{\hat{P}[dog \ ran]}$

Drawback

- Sparsity issue: $\hat{P}[...]$ most likely to be 0
- Bad case: "dog ran away" never appear in the training corpus, so $\hat{P}[dog ran away] = 0$
- Even worse: "dog ran" never appear in the training corpus, so $\hat{P}[dog ran] = 0$

- Basic method: adding non-zero probability mass to zero entries
- Example: Laplace smoothing that adds one count to all *n*-grams pseudocount[*dog*] = actualcount[*dog*] + 1

- Basic method: adding non-zero probability mass to zero entries
- Example: Laplace smoothing that adds one count to all *n*-grams pseudocount[*dog*] = actualcount[*dog*] + 1

 $\widehat{P}[dog] = \frac{\text{pseudocount}[dog]}{\text{pseudo length of the corpus}} = \frac{\text{pseudocount}[dog]}{\text{actual length of the corpus} + |V|}$

- Basic method: adding non-zero probability mass to zero entries
- Example: Laplace smoothing that adds one count to all *n*-grams pseudocount[*dog ran away*] = actualcount[*dog ran away*] + 1 pseudocount[*dog ran*] = ?

- Basic method: adding non-zero probability mass to zero entries
- Example: Laplace smoothing that adds one count to all *n*-grams pseudocount[*dog ran away*] = actualcount[*dog ran away*] + 1 pseudocount[*dog ran*] = actualcount[*dog ran*] + |V|

P[away|dog ran] ≈ pseudocount[dog ran away] pseudocount [dog ran] since #bigrams ≈#trigrams on the corpus

Example

- Preprocessed text: this is a good sentence this is another good sentence
- How many unigrams?
- How many bigrams?
- Estimate $\hat{P}[is|this]$ without using Laplace smoothing
- Estimate $\hat{P}[is|this]$ using Laplace smoothing (|V| = 10000)

- Basic method: adding non-zero probability mass to zero entries
 - Example: Laplace smoothing
- Back-off methods: restore to lower order statistics
 - Example: if $\widehat{P}[away|dog ran]$ does not work, use $\widehat{P}[away|ran]$ as replacement
- Mixture methods: use a linear combination of $\hat{P}[away|ran]$ and $\hat{P}[away|dog ran]$

Another drawback

- High dimesion: # of grams too large
- Vocabulary size: about 10k=2^14
- #trigram: about 2^42

Rectify: clustering

- Class-based language models: cluster tokens into classes; replace each token with its class
- Significantly reduces the vocabulary size; also address sparsity issue
- Combinations of smoothing and clustering are also possible