Propositional Logic Part 1

Yingyu Liang
yliang@cs.wisc.edu
Computer Sciences Department
University of Wisconsin, Madison

5 is even implies 6 is odd.

Is this sentence logical?
True or false?

Logic

- If the rules of the world are presented formally, then a decision maker can use logical reasoning to make rational decisions.
- Several types of logic:
- propositional logic (Boolean logic)
- first order logic (first order predicate calculus)
- A logic includes:
- syntax: what is a correctly formed sentence
- semantics: what is the meaning of a sentence
- Inference procedure (reasoning, entailment): what sentence logically follows given knowledge

Propositional logic syntax

```
Sentence
AtomicSentence
Symbol
ComplexSentence
|
1
\(\rightarrow \square\) AtomicSentence \(\mid\) ComplexSentence
\(\rightarrow \square\) True \(\mid\) False \(\mid\) Symbol
\(\rightarrow \square \mathrm{P}|\mathrm{Q}| \mathrm{R} \mid \ldots\)
\(\rightarrow \square \neg\) Sentence
(Sentence \(\wedge\) Sentence )
(Sentence \(\vee\) Sentence )
(Sentence \(\Rightarrow\) Sentence )
(Sentence \(\Leftrightarrow\) Sentence )
BNF (Backus-Naur Form) grammar in propositional logic
```

$$
\begin{array}{ll}
((\neg P \vee((\text { True } \wedge R) \Leftrightarrow Q)) \Rightarrow S & \text { well formed } \\
(\neg(P \vee Q) \wedge \Rightarrow S) & \text { not well formed }
\end{array}
$$

Propositional logic syntax

Means True

$((\neg P \vee(($ True $\wedge R) \Leftrightarrow Q)) \Rightarrow S)$

Propositional logic syntax

- Precedence (from highest to lowest):

$$
\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow
$$

- If the order is clear, you can leave off parenthesis.

$$
\begin{aligned}
& \neg P \vee \text { True } \wedge R \Leftrightarrow Q \Rightarrow S \quad \text { ok } \\
& P \Rightarrow Q \Rightarrow S \quad \text { not ok }
\end{aligned}
$$

Semantics

- An interpretation is a complete True / False assignment to propositional symbols
- Example symbols: P means "It is hot", Q means "It is humid", R means "It is raining"
- There are 8 interpretations (TTT, ..., FFF)
- The semantics (meaning) of a sentence is the set of interpretations in which the sentence evaluates to True.
- Example: the semantics of the sentence $P \vee Q$ is the set of 6 interpretations
- $P=$ True, $Q=$ True, $R=$ True or False
- $P=$ True, $\mathrm{Q}=$ False, $\mathrm{R}=$ True or False
- $P=$ False, $\mathrm{Q}=$ True, $\mathrm{R}=$ True or False
- A model of a set of sentences is an interpretation in which all the sentences are true.

Evaluating a sentence under an interpretation

- Calculated using the meaning of connectives, recursively.

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	alse	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Pay attention to \Rightarrow
- " 5 is even implies 6 is odd" is True!
- If P is False, regardless of $Q, P \Rightarrow Q$ is True
- No causality needed: " 5 is odd implies the Sun is a star" is True.

Semantics example

$$
\neg P \vee Q \wedge R \Rightarrow Q
$$

Semantics example

$$
\neg P \vee Q \wedge R \Rightarrow Q
$$

P	Q	R	$\sim P$	$Q^{\wedge} R$	$\sim P^{\prime} Q^{\wedge} R$	$\sim P v Q^{\wedge} R->Q$
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

Satisfiable: the sentence is true under some interpretations
Deciding satisfiability of a sentence is NP-complete

Semantics example

$(P \wedge R \Rightarrow Q) \wedge P \wedge R \wedge \neg Q$

Semantics example

$$
(P \wedge R \Rightarrow Q) \wedge P \wedge R \wedge \neg Q
$$

P	Q	R	$\sim \mathrm{Q}$	$\mathrm{R}^{\wedge} \sim \mathrm{Q}$	$\mathrm{P}^{\wedge} \mathrm{R}^{\wedge} \sim \mathrm{Q}$	$\mathrm{P}^{\wedge} \mathrm{R}$	$\mathrm{P}^{\wedge} \mathrm{R}->\mathrm{Q}$	final
0	0	0	1	0	0	0	1	0
0	0	1	1	1	0	0	1	0
0	1	0	0	0	0	0	1	0
0	1	1	0	0	0	0	1	0
1	0	0	1	0	0	0	1	0
1	0	1	1	1	1	1	0	0
1	1	0	0	0	0	0	1	0
1	1	1	0	0	0	1	1	0

Unsatisfiable: the sentence is false under all interpretations.

Semantics example

$$
(P \Rightarrow Q) \vee P \wedge \neg Q
$$

Semantics example

$$
(P \Rightarrow Q) \vee P \wedge \neg Q
$$

P	Q	R	$\sim Q$	$P->Q$	$P^{\wedge \sim} \sim$	$(P->Q) v P^{\wedge} \sim Q$
0	0	0	1	1	0	1
0	0	1	1	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	0	1	1	0	1	1
1	1	0	0	1	0	1
1	1	1	0	1	0	1

Valid: the sentence is true under all interpretations
Also called tautology.

Example questions

$$
(Q \Rightarrow P) \vee P \wedge \neg Q
$$

What's the value if $P=0, Q=1$?

Knowledge base

- A knowledge base KB is a set of sentences.

Example KB:

- TomGivingLecture \Leftrightarrow (TodaylsTuesday \vee TodaylsThursday)
- \neg TomGivingLecture
- It is equivalent to a single long sentence: the conjunction of all sentences
- (TomGivingLecture \Leftrightarrow (TodayIsTuesday \vee TodayIsThursday)) $\wedge \neg$ TomGivingLecture
- The model of a KB is the interpretations in which all sentences in the KB are true.

Entailment

- Entailment is the relation of a sentence β logically follows from other sentences α (i.e. the KB).

$$
\alpha \mid=\beta
$$

- $\alpha \mid=\beta$ if and only if, in every interpretation in which α is true, β is also true

All interpretations

α is true

Method 1: Model checking

We can enumerate all interpretations and check this.
This is called model checking or truth table enumeration. Equivalently...

- Deduction theorem: $\alpha \mid=\beta$ if and only if $\alpha \Rightarrow \beta$ is valid (always true)
- Proof by contradiction (refutation, reductio ad absurdum): $\alpha \mid=\beta$ if and only if $\alpha \wedge \neg \beta$ is unsatisfiable
- There are 2^{n} interpretations to check, if the KB has n symbols

Inference

- Let's say you write an algorithm which, according to you, proves whether a sentence β is entailed by α, without the lengthy enumeration
- The thing your algorithm does is called inference
- We don't trust your inference algorithm (yet), so we write things your algorithm finds as

$$
\alpha \mid-\beta
$$

- It reads " β is derived from α by your algorithm"
- What properties should your algorithm have?
- Soundness: the inference algorithm only derives entailed sentences. If $\alpha \mid-\beta$ then $\alpha \mid=\beta$
- Completeness: all entailment can be inferred. If α $\mid=\beta$ then $\alpha \mid-\beta$

Method 2: Sound inference rules

- All the logical equivalences
- Modus Ponens (Latin: mode that affirms)

$$
\alpha \Rightarrow \beta, \alpha
$$

- And-elimination

Logical equivalences

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \text { de Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \text { de Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

You can use these equivalences to modify sentences.

Example question

- Apply implication elimination to $((Q \Rightarrow R) \Rightarrow P)$
- Recall implication elimination: $(\alpha \Rightarrow \beta)$ is the same as $(\neg \alpha \vee \beta)$

Example question

- Apply implication elimination to $((Q \Rightarrow R) \Rightarrow P)$
- Recall implication elimination: $(\alpha \Rightarrow \beta)$ is the same as $(\neg \alpha \vee \beta)$
- $((Q \Rightarrow R) \Rightarrow P)$
- $(\neg(Q \Rightarrow R) \vee P)$
- $(\neg(\neg Q \vee R) \vee P)$

Proof

- Series of inference steps that leads from α (or KB) to β
- This is exactly a search problem

KB:

1. TomGivingLecture \Leftrightarrow (TodayIsTuesday \vee TodayIsThursday)
2. \neg TomGivingLecture
β :
\neg TodayIsTuesday

Proof

KB:

1. TomGivingLecture \Leftrightarrow (TodayIsTuesday \vee TodayIsThursday)
2. \neg TomGivingLecture
3. (TomGivingLecture \Rightarrow (TodayIsTuesday \vee TodayIsThursday))
\wedge ((TodayIsTuesday \vee TodayIsThursday) \Rightarrow TomGivingLecture) biconditional-elimination to 1 .
4. (TodayIsTuesday \vee TodayIsThursday) \Rightarrow TomGivingLecture and-elimination to 3 .
5. \neg TomGivingLecture $\Rightarrow \neg$ (TodayIsTuesday \vee

TodayIsThursday) contraposition to 4.
6. \neg (TodayIsTuesday \vee TodayIsThursday) Modus Ponens 2,5.
7. \neg TodayIsTuesday $\wedge \neg$ TodayIsThursday de Morgan to 6 .
8. \neg TodayIsTuesday and-elimination to 7 .

Method 3: Resolution

- Your algorithm can use all the logical equivalences, Modus Ponens, and-elimination to derive new sentences.
- Resolution: a single inference rule
- Sound: only derives entailed sentences
- Complete: can derive any entailed sentence
- Resolution is only refutation complete: if $\mathrm{KB} \mid=\beta$, then $\mathrm{KB} \wedge \neg \beta \mid$ - empty. It cannot derive empty $\mid-(\mathrm{P} \vee \neg \mathrm{P})$
- But the sentences need to be preprocessed into a special form
- But all sentences can be converted into this form

Conjunctive Normal Form (CNF)

$\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)$

- Replace all \Leftrightarrow using biconditional elimination
- Replace all \Rightarrow using implication elimination
- Move all negations inward using -double-negation elimination -de Morgan's rule
- Apply distributivity of \vee over \wedge

Convert example sentence into CNF

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

starting sentence

Convert example sentence into CNF

$B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right) \quad$ starting sentence
$\left(\mathrm{B}_{1,1} \Rightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)\right) \wedge\left(\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \Rightarrow \mathrm{B}_{1,1}\right)$
biconditional élimination

Convert example sentence into CNF

$$
\begin{aligned}
& \mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \quad \text { starting sentence } \\
& \left(\mathrm{B}_{1,1} \Rightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)\right) \wedge\left(\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \Rightarrow \mathrm{B}_{1,1}\right) \\
& \quad \text { biconditional elimination }
\end{aligned}
$$

$\left(\neg \mathrm{B}_{1,1} \vee \mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \wedge\left(\neg\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \vee \mathrm{B}_{1,1}\right)$ implication elimination

Convert example sentence into CNF

$$
\begin{aligned}
& \mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \quad \text { starting sentence } \\
& \left(\mathrm{B}_{1,1} \Rightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)\right) \wedge\left(\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \Rightarrow \mathrm{B}_{1,1}\right) \\
& \quad \text { biconditional elimination } \\
& \left(\neg B_{1,1} \vee \mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \wedge\left(\neg\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \vee \mathrm{B}_{1,1}\right) \\
& \quad \text { implication elimination } \\
& \left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg \mathrm{P}_{1,2} \wedge \neg \mathrm{P}_{2,1}\right) \vee \mathrm{B}_{1,1}\right) \\
& \quad \text { move negations inward }
\end{aligned}
$$

Convert example sentence into CNF

$$
\begin{aligned}
& \mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \quad \text { starting sentence } \\
& \left(\mathrm{B}_{1,1} \Rightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)\right) \wedge\left(\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \Rightarrow \mathrm{B}_{1,1}\right) \\
& \quad \text { biconditional elimination }
\end{aligned}
$$

$\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \vee \mathrm{B}_{1,1}\right)$ implication elimination
$\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)$ move negations inward
$\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)$ distribute \vee over \wedge

Example

$(A \Leftrightarrow B) \vee P$

starting sentence

Example

$(A \Leftrightarrow B) \vee P$	starting sentence
$((A \Rightarrow B) \wedge(B \Rightarrow A)) \vee P$	biconditional elimination
$((\neg A \vee B) \wedge(\neg B \vee A)) \vee P$	implication elimination
$((\neg A \vee B) \wedge(\neg B \vee A)) \vee P$ move negations inward	
$(\neg A \vee B \vee P) \wedge(\neg B \vee A \vee P)$ distribute \vee over \wedge	

Resolution steps

- Given KB and β (query)
- Add $\neg \beta$ to KB, show this leads to empty (False. Proof by contradiction)
- Everything needs to be in CNF
- Example KB:
- $\mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)$
- $\neg \mathrm{B}_{1,1}$
- Example query: $\neg \mathbb{P}_{1,2}$

Resolution preprocessing

- $\operatorname{Add} \neg \beta$ to KB , convert to CNF:

$$
\begin{aligned}
& \text { a1: }\left(\neg \mathrm{B}_{1,1} \vee \mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \\
& \text { a2: }\left(\neg \mathrm{P}_{1,2} \vee \mathrm{~B}_{1,1}\right) \\
& \text { a3: }\left(\neg \mathrm{P}_{2,1} \vee \mathrm{~B}_{1,1}\right) \\
& \text { b: } \neg \mathrm{B}_{1,1} \\
& \text { c: } \mathrm{P}_{1,2}
\end{aligned}
$$

- Want to reach goal: empty

Resolution

- Take any two clauses where one contains some symbol, and the other contains its complement (negative)

$$
P \vee Q \vee R \quad \quad \neg Q \vee S \vee T
$$

- Merge (resolve) them, throw away the symbol and its complement

$$
P \vee R \vee S \vee T
$$

- If two clauses resolve and there's no symbol left, you have reached empty (False). KB |= β
- If no new clauses can be added, KB does not entail β

Resolution example

$$
\begin{aligned}
& \text { a1: }\left(\neg \mathrm{B}_{1,1} \vee \mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \\
& \text { a2: }\left(\neg \mathrm{P}_{1,2} \vee \mathrm{~B}_{1,1}\right) \\
& \text { a3: }\left(\neg \mathrm{P}_{2,1} \vee \mathrm{~B}_{1,1}\right) \\
& \text { b: } \neg \mathrm{B}_{1,1} \\
& \text { c: } \mathrm{P}_{1,2}
\end{aligned}
$$

Resolution example

$$
\begin{aligned}
& \text { a1: }\left(\neg \mathrm{B}_{1,1} \vee \mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \\
& \text { a2: }\left(\neg \mathrm{P}_{1,2} \vee \mathrm{~B}_{1,1}\right) \\
& \text { a3: }\left(\neg \mathrm{P}_{2,1} \vee \mathrm{~B}_{1,1}\right) \\
& \text { b: } \neg \mathrm{B}_{1,1} \\
& \text { c: } \mathrm{P}_{1,2}
\end{aligned}
$$

Step 1: resolve a2, c: $\mathrm{B}_{1,1}$

Step 2: resolve above and b:
empty

Efficiency of the resolution algorithm

- Run time can be exponential in the worst case
- Often much faster
- Factoring: if a new clause contains duplicates of the same symbol, delete the duplicates

$$
P \vee R \vee P \vee T \rightarrow P \vee R \vee T
$$

- If a clause contains a symbol and its complement, the clause is a tautology and useless, it can be thrown away

```
a1: \(\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right)\)
a2: \(\left(\neg \mathrm{P}_{1,2} \vee \mathrm{~B}_{1,1}\right)\)
\(\rightarrow \mathrm{P}_{1,2} \vee \mathrm{P}_{2,1} \vee \neg \mathrm{P}_{1,2} \quad\) (valid, throw away)
```

