Basic Probability and Statistics

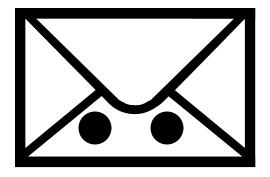
Yingyu Liang

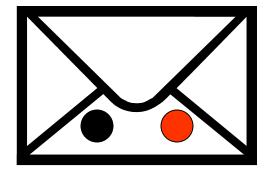
yliang@cs.wisc.edu

Computer Sciences Department University of Wisconsin, Madison

Reasoning with Uncertainty

- There are two identical-looking envelopes
 - one has a red ball (worth \$100) and a black ball
 - one has two black balls. Black balls worth nothing





- You randomly grabbed an envelope, randomly took out one ball – it's black.
- At this point you're given the option to switch the envelope. To switch or not to switch?

Outline

- Probability
 - random variable
 - Axioms of probability
 - Conditional probability
 - Probabilistic inference: Bayes rule
 - Independence
 - Conditional independence

Uncertainty

- Randomness
 - Is our world random?
- Uncertainty
 - Ignorance (practical and theoretical)
 - Will my coin flip ends in head?
 - Will bird flu strike tomorrow?
- Probability is the language of uncertainty
 - Central pillar of modern day artificial intelligence

- A space of outcomes that we assign probabilities to
- Outcomes can be binary, multi-valued, or continuous
- Outcomes are mutually exclusive
- Examples
 - Coin flip: {head, tail}
 - Die roll: {1,2,3,4,5,6}
 - English words: a dictionary
 - Temperature tomorrow: R₊ (kelvin)

Random variable

- A variable, x, whose domain is the sample space, and whose value is somewhat uncertain
- Examples:
 - x = coin flip outcome
 - x = first word in tomorrow's headline news
 - x = tomorrow's temperature
- Kind of like x = rand()

Probability for discrete events

- Probability P(x=a) is the fraction of times x takes value a
- Often we write it as P(a)
- There are other definitions of probability, and philosophical debates... but we'll not go there
- Examples
 - P(head)=P(tail)=0.5 fair coin
 - P(head)=0.51, P(tail)=0.49 slightly biased coin
 - P(head)=1, P(tail)=0 Jerry's coin
 - P(first word = "the" when flipping to a random page in NYT)=?
- Demo: Search "The Book of Odds"

Probability table

Weather

Sunny	Cloudy	Rainy
200/365	100/365	65/365

- P(Weather = sunny) = P(sunny) = 200/365
- P(Weather) = {200/365, 100/365, 65/365}
- For now we'll be satisfied with obtaining the probabilities by counting frequency from data...

Probability for discrete events

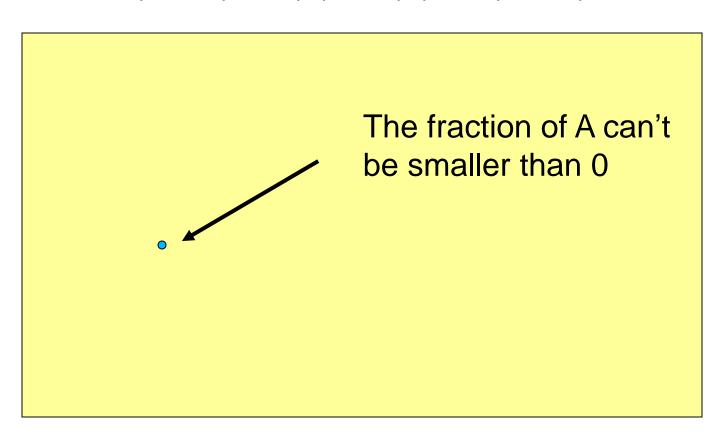
- Probability for more complex events A
 - P(A="head or tail")=? fair coin
 - P(A="even number")=? fair 6-sided die
 - P(A="two dice rolls sum to 2")=?

Probability for discrete events

- Probability for more complex events A
 - P(A="head or tail")=0.5 + 0.5 = 1 fair coin
 - P(A="even number")=1/6 + 1/6 + 1/6 = 0.5 fair 6sided die
 - P(A="two dice rolls sum to 2")=1/6 * 1/6 = 1/36

- $P(A) \in [0,1]$
- P(true)=1, P(false)=0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

- $P(A) \in [0,1]$
- P(true)=1, P(false)=0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$



- $P(A) \in [0,1]$
- P(true)=1, P(false)=0

The fraction of A can't be bigger than 1

 $P(A \lor B) = P(A) + P(B) - P(A \land B)$

- $P(A) \in [0,1]$
- P(true)=1, P(false)=0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

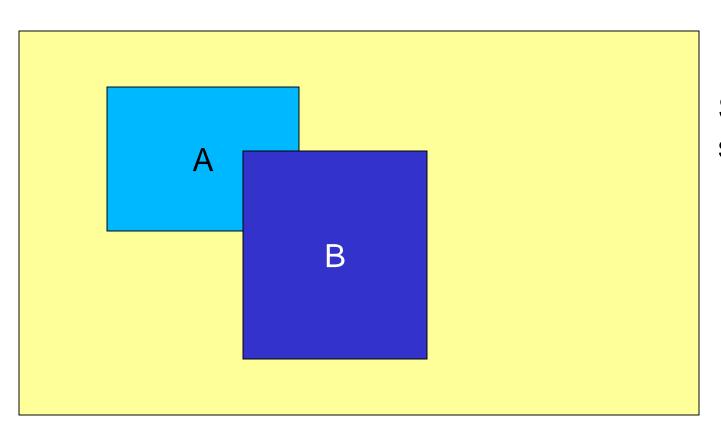
Valid sentence: e.g. "x=head or x=tail"

- $P(A) \in [0,1]$
- P(true)=1, P(false)=0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

Sample space

Invalid sentence: e.g. "x=head AND x=tail"

- $P(A) \in [0,1]$
- P(true)=1, P(false)=0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$



Some theorems derived from the axioms

- $P(\neg A) = 1 P(A)$ picture?
- If A can take k different values $a_1 ... a_k$: $P(A=a_1) + ... P(A=a_k) = 1$
- $P(B) = P(B \land \neg A) + P(B \land A)$, if A is a binary event
- $P(B) = \sum_{i=1...k} P(B \land A=a_i)$, if A can take k values

Joint probability

 The joint probability P(A=a, B=b) is a shorthand for P(A=a ∧ B=b), the probability of both A=a and B=b happen

P(A=a), e.g. $P(1^{st} \text{ word on a random page} = "San") = 0.001$ (possibly: San Francisco, San Diego, ...) P(B=b), e.g. $P(2^{nd} \text{ word} = \text{``Francisco''}) = 0.0008$ (possibly: San Francisco, Don Francisco, Pablo Francisco ...) P(A=a,B=b), e.g. P(1st = "San",2nd = "Francisco")=0.0007

Joint probability table

weather

temp

	Sunny	Cloudy	Rainy
hot	150/365	40/365	5/365
cold	50/365	60/365	60/365

- P(temp=hot, weather=rainy) = P(hot, rainy) = 5/365
- The full joint probability table between N variables, each taking k values, has k^N entries (that's a lot!)

Marginal probability

Sum over other variables

weather

Cloudy Rainy Sunny 40/365 5/365 150/365 hot temp cold 50/365 60/365 60/365 200/365 100/365 65/365 \sum

P(Weather)={200/365, 100/365, 65/365}

 The name comes from the old days when the sums are written on the margin of a page

Marginal probability

Sum over other variables

weather

temp

	Sunny	Cloudy	Rainy
hot	150/365	40/365	5/365
cold	50/365	60/365	60/365

195/365

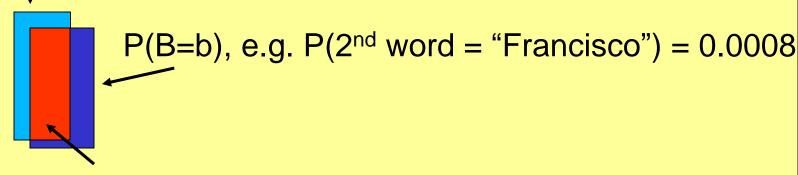
 $P(temp) = \{195/365, 170/365\}$

• This is nothing but $P(B) = \sum_{i=1...k} P(B \land A = a_i)$, if A can take k values

Conditional probability

 The conditional probability P(A=a | B=b) is the fraction of times A=a, within the region that B=b

P(A=a), e.g. $P(1^{st} \text{ word on a random page} = "San") = 0.001$

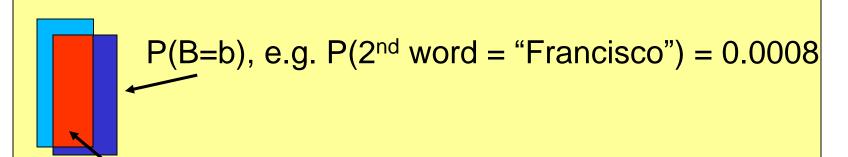


P(A=a | B=b), e.g. P(1st="San" | 2nd ="Francisco")=**0.875** (possibly: San, Don, Pablo ...)

Although "San" is rare and "Francisco" is rare, given "Francisco" then "San" is quite likely!

Conditional probability

- P(San | Francisco)
 - = #(1st=S and 2nd=F) / #(2nd=F)
 - = P(San ∧ Francisco) / P(Francisco)
 - = 0.0007 / 0.0008
 - = 0.875



Conditional probability

In general, the conditional probability is

$$P(A = a \mid B) = \frac{P(A = a, B)}{P(B)} = \frac{P(A = a, B)}{\sum_{\text{all } a_i} P(A = a_i, B)}$$

 We can have everything conditioned on some other events C, to get a conditional version of conditional probability

$$P(A \mid B, C) = \frac{P(A, B \mid C)}{P(B \mid C)}$$

'|' has low precedence.
This should read P(A | (B,C))

The chain rule

 From the definition of conditional probability we have the chain rule

$$P(A, B) = P(B) * P(A \mid B)$$

It works the other way around

$$P(A, B) = P(A) * P(B \mid A)$$

It works with more than 2 events too

$$P(A_1, A_2, ..., A_n) =$$

 $P(A_1) * P(A_2 | A_1) * P(A_3 | A_1, A_2) * ... * P(A_n | A_1, A_2 ... A_{n-1})$

Reasoning

How do we use probabilities in AI?

- You wake up with a headache (D'oh!).
- Do you have the flu?
- H = headache, F = flu

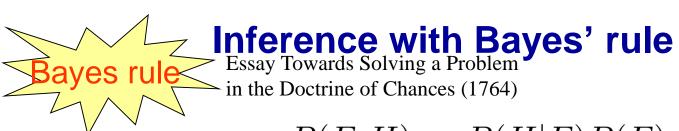
Logical Inference: if (H) then F. (but the world is often not this clear cut)

Statistical Inference: compute the probability of a query given (conditioned on) evidence, i.e. P(F|H)

Inference: compute the probability of a query given evidence (H = headache, F = flu)

You know that

- P(H) = 0.1 "one in ten people has headache"
- P(F) = 0.01 "one in 100 people has flu"
- P(H|F) = 0.9 "90% of people who have flu have headache"
- How likely do you have the flu?
 - **0.9?**
 - **0.01?**
 - ...?



in the Doctrine of Chances (1764)

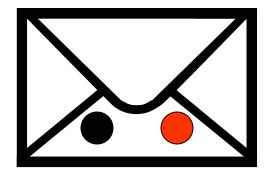
$$P(F|H) = \frac{P(F,H)}{P(H)} = \frac{P(H|F)P(F)}{P(H)}$$

- P(H) = 0.1 "one in ten people has headache"
- P(F) = 0.01 "one in 100 people has flu"
- P(H|F) = 0.9 "90% of people who have flu have headache"
- P(F|H) = 0.9 * 0.01 / 0.1 = 0.09
- So there's a 9% chance you have flu much less than 90%
- But it's higher than P(F)=1%, since you have the headache

Inference with Bayes' rule

- P(A|B) = P(B|A)P(A) / P(B) Bayes' rule
- Why do we make things this complicated?
 - Often P(B|A), P(A), P(B) are easier to get
 - Some names:
 - Prior P(A): probability before any evidence
 - Likelihood P(B|A): assuming A, how likely is the evidence
 - Posterior P(A|B): conditional prob. after knowing evidence
 - Inference: deriving unknown probability from known ones
- In general, if we have the full joint probability table, we can simply do P(A|B)=P(A, B) / P(B) – more on this later...

- In a bag there are two envelopes
 - one has a red ball (worth \$100) and a black ball
 - one has two black balls. Black balls worth nothing



- You randomly grabbed an envelope, randomly took out one ball – it's black.
- At this point you're given the option to switch the envelope. To switch or not to switch?

- E: envelope, 1=(R,B), 2=(B,B)
- B: the event of drawing a black ball
- P(E|B) = P(B|E)*P(E) / P(B)
- We want to compare P(E=1|B) vs. P(E=2|B)

- E: envelope, 1=(R,B), 2=(B,B)
- B: the event of drawing a black ball
- P(E|B) = P(B|E)*P(E) / P(B)
- We want to compare P(E=1|B) vs. P(E=2|B)
- P(B|E=1) = 0.5, P(B|E=2) = 1
- P(E=1)=P(E=2)=0.5
- P(B)=3/4 (it in fact doesn't matter for the comparison)

- E: envelope, 1=(R,B), 2=(B,B)
- B: the event of drawing a black ball
- P(E|B) = P(B|E)*P(E) / P(B)
- We want to compare P(E=1|B) vs. P(E=2|B)
- P(B|E=1) = 0.5, P(B|E=2) = 1
- P(E=1)=P(E=2)=0.5
- P(B)=3/4 (it in fact doesn't matter for the comparison)
- P(E=1|B)=1/3, P(E=2|B)=2/3
- After seeing a black ball, the posterior probability of this envelope being 1 (thus worth \$100) is smaller than it being 2
- Thus you should switch

Independence

- Two events A, B are independent, if (the following are equivalent)
 - P(A, B) = P(A) * P(B)
 - P(A | B) = P(A)
 - P(B | A) = P(B)
- For a 4-sided die, let
 - A=outcome is small
 - B=outcome is even
 - Are A and B independent?
- How about a 6-sided die?

Independence

- Independence is a domain knowledge
- If A, B are independent, the joint probability table between A, B is simple:
 - it has k² cells, but only 2k-2 parameters. This is good news more on this later...
- Example: P(burglary)=0.001, P(earthquake)=0.002.
 Let's say they are independent. The full joint probability table=?

Conditional independence

- Random variables can be dependent, but conditionally independent
- Your house has an alarm
 - Neighbor John will call when he hears the alarm
 - Neighbor Mary will call when she hears the alarm
 - Assume John and Mary don't talk to each other
- JohnCall independent of MaryCall?
 - No If John called, likely the alarm went off, which increases the probability of Mary calling
 - P(MaryCall | JohnCall) ≠ P(MaryCall)

Conditional independence

- If we know the status of the alarm, JohnCall won't affect Mary at all
 - P(MaryCall | Alarm, JohnCall) = P(MaryCall | Alarm)
- We say JohnCall and MaryCall are conditionally independent, given Alarm
- In general A, B are conditionally independent given C
 - if P(A | B, C) = P(A | C), or
 - P(B | A, C) = P(B | C), or
 - P(A, B | C) = P(A | C) * P(B | C)

Independence example #1

<i>x</i> , <i>y</i>	P(X=x, Y=y)	\mathcal{X}	P(X = x)
sun, on-time	0.20	sun	0.3
rain, on-time	0.20	rain	0.5
snow, on-time	0.05	snow	0.2
sun, late	0.10	y	P(Y=y)
rain, late	0.30	on-time	0.45
snow, late	0.15	late	0.55

Are *X* and *Y* independent here?

Independence example #2

<i>x</i> , <i>y</i>	P(X=x, Y=y)	\mathcal{X}	P(X = x)
sun, fly-United	0.27	sun	0.3
rain, fly-United	0.45	rain	0.5
snow, fly-United	0.18	snow	0.2
sun, fly-Delta	0.03	y	P(Y=y)
rain, fly-Delta	0.05	fly-United	0.9
snow, fly-Delta	0.02	fly-Delta	0.1

Are *X* and *Y* independent here?

Expected values

 The expected value of a random variable that takes on numerical values is defined as:

$$\mathbf{E}[X] = \sum_{x} x P(x)$$

This is the same thing as the mean

 We can also talk about the expected value of a function of a random variable

$$\mathbf{E}[g(X)] = \sum_{x} g(x)P(x)$$

Expected value examples

• Shoesize

$$\mathbf{E}[Shoesize]$$

$$= 5 \times P(Shoesize = 5) + \cdots + 14 \times P(Shoesize = 14)$$

• Suppose each lottery ticket costs \$1 and the winning ticket pays out \$100. The probability that a particular ticket is the winning ticket is 0.001.

What is the expectation of the gain?

Expected value examples

Shoesize

$$= 5 \times P(Shoesize = 5) + \dots + 14 \times P(Shoesize = 14)$$

• Suppose each lottery ticket costs \$1 and the winning ticket pays out \$100. The probability that a particular ticket is the winning ticket is 0.001.

$$\mathbf{E}[gain(Lottery)]$$

- = gain(winning)P(winning) + gain(losing)P(losing)
- $= (\$100 \$1) \times 0.001 \$1 \times 0.999$
- = -\$0.9

Summary

- Axioms of probability and related properties
- Joint/marginal/conditional probabilities
- Bayes' rule for reasoning
- Independence and conditional independence
- Expectation