Basic Probability and Statistics

Yingyu Liang
yliang@cs.wisc.edu
Computer Sciences Department
University of Wisconsin, Madison

[based on slides from Jerry Zhu, Mark Craven]

Reasoning with Uncertainty

- There are two identical-looking envelopes
- one has a red ball (worth $\$ 100$) and a black ball
- one has two black balls. Black balls worth nothing

- You randomly grabbed an envelope, randomly took out one ball - it's black.
- At this point you're given the option to switch the envelope. To switch or not to switch?

Outline

- Probability
- random variable
- Axioms of probability
- Conditional probability
- Probabilistic inference: Bayes rule
- Independence
- Conditional independence

Uncertainty

- Randomness
- Is our world random?
- Uncertainty
- Ignorance (practical and theoretical)
- Will my coin flip ends in head?
- Will bird flu strike tomorrow?
- Probability is the language of uncertainty
- Central pillar of modern day artificial intelligence

Sample space

- A space of outcomes that we assign probabilities to
- Outcomes can be binary, multi-valued, or continuous
- Outcomes are mutually exclusive
- Examples
- Coin flip: \{head, tail\}
- Die roll: $\{1,2,3,4,5,6\}$
- English words: a dictionary
- Temperature tomorrow: R_{+}(kelvin)

Random variable

- A variable, x, whose domain is the sample space, and whose value is somewhat uncertain
- Examples:
- x = coin flip outcome
- $x=$ first word in tomorrow's headline news
- $\mathrm{x}=$ tomorrow's temperature
- Kind of like $x=$ rand()

Probability for discrete events

- Probability $\mathrm{P}(x=a)$ is the fraction of times x takes value a
- Often we write it as $\mathrm{P}(\mathrm{a})$
- There are other definitions of probability, and philosophical debates... but we'll not go there
- Examples
- $P($ head $)=P($ tail $)=0.5$ fair coin
- $P($ head $)=0.51, P($ tail $)=0.49$ slightly biased coin
- $P($ head $)=1, P($ tail $)=0$ Jerry's coin
- P (first word = "the" when flipping to a random page in NYT)=?
- Demo: Search "The Book of Odds"

Probability table

- Weather

- $P($ Weather $=$ sunny $)=P($ sunny $)=200 / 365$
- $P($ Weather $)=\{200 / 365,100 / 365,65 / 365\}$
- For now we'll be satisfied with obtaining the probabilities by counting frequency from data...

Probability for discrete events

- Probability for more complex events A
- $P(A=$ "head or tail" $)=$? fair coin
- $P(A=$ "even number")=? fair 6-sided die
- $\mathrm{P}(\mathrm{A}=$ "two dice rolls sum to 2 " $)=$?

Probability for discrete events

- Probability for more complex events A
- $\mathrm{P}(\mathrm{A}=$ "head or tail" $)=0.5+0.5=1$ fair coin
- $P(A=$ "even number" $)=1 / 6+1 / 6+1 / 6=0.5$ fair 6 sided die
- $P(A=$ "two dice rolls sum to 2 " $)=1 / 6$ * $1 / 6=1 / 36$

The axioms of probability

- $P(A) \in[0,1]$
- $P($ true $)=1, P($ false $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

The axioms of probability

- $P(A) \in[0,1]$
- $P($ true $)=1, P($ false $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Sample space

The axioms of probability

- $P(A) \in[0,1]$
- $P($ true $)=1, P($ false $)=0$

The fraction of A can't

- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$ be bigger than 1

Sample space

The axioms of probability

- $P(A) \in[0,1]$
- $\quad P($ true $)=1, P($ false $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Valid sentence: e.g. " $x=$ head or $x=$ tail"
Sample space

The axioms of probability

- $P(A) \in[0,1]$
- $\quad P($ true $)=1, P($ false $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Sample space

Invalid sentence:
e.g. " $x=$ head AND $x=t a i l$ "

The axioms of probability

- $P(A) \in[0,1]$
- $\quad \mathrm{P}($ true $)=1, \mathrm{P}($ false $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Sample space

Some theorems derived from the axioms

- $P(\neg A)=1-P(A) \quad$ picture?
- If A can take k different values $a_{1} \ldots a_{k}$:

$$
P\left(A=a_{1}\right)+\ldots P\left(A=a_{k}\right)=1
$$

- $P(B)=P(B \wedge \neg A)+P(B \wedge A)$, if A is a binary event
- $P(B)=\sum_{i=1 \ldots k} P\left(B \wedge A=a_{i}\right)$, if A can take k values

Joint probability

- The joint probability $P(A=a, B=b)$ is a shorthand for $P(A=a \wedge B=b)$, the probability of both $A=a$ and $B=b$ happen

Joint probability table

weather

- $P($ temp $=$ hot, weather=rainy $)=P($ hot, rainy $)=5 / 365$
- The full joint probability table between N variables, each taking k values, has k^{N} entries (that's a lot!)

Marginal probability

- Sum over other variables

$P($ Weather $)=\{200 / 365,100 / 365,65 / 365\}$
- The name comes from the old days when the sums are written on the margin of a page

Marginal probability

- Sum over other variables

$P($ temp $)=\{195 / 365,170 / 365\}$
- This is nothing but $P(B)=\sum_{i=1 \ldots k} P\left(B \wedge A=a_{i}\right)$, if A can take k values

Conditional probability

- The conditional probability $P(A=a \mid B=b)$ is the fraction of times $A=a$, within the region that $B=b$

Conditional probability

- P(San | Francisco)
$=\#\left(1^{\text {st }}=S\right.$ and $\left.2^{\text {nd }}=F\right) / \#\left(2^{\text {nd }}=F\right)$
$=P($ San \wedge Francisco $) / P($ Francisco $)$
$P(S)=0.001$
$P(F)=0.0008$
$\mathrm{P}(\mathrm{S}, \mathrm{F})=0.0007$
$=0.0007 / 0.0008$
$=0.875$

Conditional probability

- In general, the conditional probability is

$$
P(A=a \mid B)=\frac{P(A=a, B)}{P(B)}=\frac{P(A=a, B)}{\sum_{\text {all } a_{i}} P\left(A=a_{i}, B\right)}
$$

- We can have everything conditioned on some other events C , to get a conditional version of conditional probability

$$
P(A \mid B, C)=\frac{P(A, B \mid C)}{P(B \mid C)}
$$

'|' has low precedence.
This should read $P(A \mid(B, C))$

The chain rule

- From the definition of conditional probability we have the chain rule

$$
P(A, B)=P(B) * P(A \mid B)
$$

- It works the other way around

$$
P(A, B)=P(A){ }^{*} P(B \mid A)
$$

- It works with more than 2 events too
$P\left(A_{1}, A_{2}, \ldots, A_{n}\right)=$
$P\left(A_{1}\right){ }^{*} P\left(A_{2} \mid A_{1}\right){ }^{*} P\left(A_{3} \mid A_{1}, A_{2}\right){ }^{*} \ldots{ }^{*} P\left(A_{n} \mid A_{1}, A_{2} \ldots A_{n-1}\right)$

Reasoning

How do we use probabilities in AI?

- You wake up with a headache (D'oh!).
- Do you have the flu?
- $\mathrm{H}=$ headache, $\mathrm{F}=$ flu

Logical Inference: if (H) then F . (but the world is often not this clear cut)

Statistical Inference: compute the probability of a query given (conditioned on) evidence, i.e. $\mathrm{P}(\mathrm{F} \mid \mathrm{H})$

Inference with Bayes' rule: Example 1

Inference: compute the probability of a query given evidence ($\mathrm{H}=$ headache, $\mathrm{F}=\mathrm{flu}$)

You know that

- $P(H)=0.1 \quad$ "one in ten people has headache"
- $P(F)=0.01$ "one in 100 people has flu"
- $P(H \mid F)=0.9$ " 90% of people who have flu have headache"
- How likely do you have the flu?
- 0.9?
- 0.01?
- ...?

$$
P(F \mid H)=\frac{P(F, H)}{P(H)}=\frac{P(H \mid F) P(F)}{P(H)}
$$

- $P(H)=0.1 \quad$ "one in ten people has headacne
- $P(F)=0.01$ "one in 100 people has flu"
- $P(H \mid F)=0.9$ " 90% of people who have flu have headache"
- $\mathrm{P}(\mathrm{F} \mid \mathrm{H})=0.9$ * $0.01 / 0.1=0.09$
- So there's a 9% chance you have flu - much less than 90\%
- But it's higher than $P(F)=1 \%$, since you have the headache

Inference with Bayes' rule

- $P(A \mid B)=P(B \mid A) P(A) / P(B) \quad$ Bayes' rule
- Why do we make things this complicated?
- Often $P(B \mid A), P(A), P(B)$ are easier to get
- Some names:
- Prior $\mathbf{P (A) : ~ p r o b a b i l i t y ~ b e f o r e ~ a n y ~ e v i d e n c e ~}$
- Likelihood $\mathbf{P}(\mathbf{B} \mid \mathbf{A})$: assuming A, how likely is the evidence
- Posterior $\mathbf{P}(\mathbf{A} \mid \mathbf{B})$: conditional prob. after knowing evidence
- Inference: deriving unknown probability from known ones
- In general, if we have the full joint probability table, we can simply do $P(A \mid B)=P(A, B) / P(B)$ - more on this later...

Inference with Bayes' rule: Example 2

- In a bag there are two envelopes
- one has a red ball (worth $\$ 100$) and a black ball
- one has two black balls. Black balls worth nothing

- You randomly grabbed an envelope, randomly took out one ball - it's black.
- At this point you're given the option to switch the envelope. To switch or not to switch?

Inference with Bayes' rule: Example 2

- E : envelope, $1=(\mathrm{R}, \mathrm{B}), 2=(\mathrm{B}, \mathrm{B})$
- B : the event of drawing a black ball
- $P(E \mid B)=P(B \mid E)^{*} P(E) / P(B)$
- We want to compare $P(E=1 \mid B)$ vs. $P(E=2 \mid B)$

Inference with Bayes' rule: Example 2

- E: envelope, 1=(R,B), 2=(B,B)
- B : the event of drawing a black ball
- $P(E \mid B)=P(B \mid E)^{*} P(E) / P(B)$
- We want to compare $P(E=1 \mid B)$ vs. $P(E=2 \mid B)$
- $P(B \mid E=1)=0.5, P(B \mid E=2)=1$
- $P(E=1)=P(E=2)=0.5$
- $P(B)=3 / 4$ (it in fact doesn't matter for the comparison)

Inference with Bayes' rule: Example 2

- E: envelope, $1=(\mathrm{R}, \mathrm{B}), 2=(\mathrm{B}, \mathrm{B})$
- B : the event of drawing a black ball
- $P(E \mid B)=P(B \mid E)^{*} P(E) / P(B)$
- We want to compare $P(E=1 \mid B)$ vs. $P(E=2 \mid B)$
- $P(B \mid E=1)=0.5, P(B \mid E=2)=1$
- $P(E=1)=P(E=2)=0.5$
- $P(B)=3 / 4$ (it in fact doesn't matter for the comparison)
- $P(E=1 \mid B)=1 / 3, P(E=2 \mid B)=2 / 3$
- After seeing a black ball, the posterior probability of this envelope being 1 (thus worth $\$ 100$) is smaller than it being 2
- Thus you should switch

Independence

- Two events A, B are independent, if (the following are equivalent)
- $P(A, B)=P(A){ }^{*} P(B)$
- $P(A \mid B)=P(A)$
- $P(B \mid A)=P(B)$
- For a 4-sided die, let
- A=outcome is small
- $B=o u t c o m e ~ i s ~ e v e n ~$
- Are A and B independent?
- How about a 6-sided die?

Independence

- Independence is a domain knowledge
- If A, B are independent, the joint probability table between A, B is simple:
- it has k^{2} cells, but only $2 k-2$ parameters. This is good news - more on this later...
Example: P (burglary) $=0.001, \mathrm{P}$ (earthquake) $=0.002$. Let's say they are independent. The full joint probability table=?

Conditional independence

- Random variables can be dependent, but conditionally independent
- Your house has an alarm
- Neighbor John will call when he hears the alarm
- Neighbor Mary will call when she hears the alarm
- Assume John and Mary don't talk to each other
- JohnCall independent of MaryCall?
- No - If John called, likely the alarm went off, which increases the probability of Mary calling
- P(MaryCall | JohnCall) $\neq P$ (MaryCall)

Conditional independence

- If we know the status of the alarm, JohnCall won't affect Mary at all
P(MaryCall | Alarm, JohnCall) $=\mathrm{P}$ (MaryCall | Alarm)
- We say JohnCall and MaryCall are conditionally independent, given Alarm
- In general A, B are conditionally independent given C
- if $P(A \mid B, C)=P(A \mid C)$, or
- $P(B \mid A, C)=P(B \mid C)$, or
- $P(A, B \mid C)=P(A \mid C){ }^{*} P(B \mid C)$

Independence example \#1

x, y	$P(X=x, Y=y)$		x
sun, on-time	0.20	sun	$P(X=x)$
rain, on-time	0.20	rain	0.3
snow, on-time	0.05	snow	0.5
sun, late	0.10		0.2
rain, late	0.30	on-time	$P(Y=y)$
snow, late	0.15	late	0.45

Are X and Y independent here?

Independence example \#2

x, y	$P(X=x, Y=y)$		x	$P(X=x)$
sun, fly-United	0.27		sun	0.3
rain, fly-United	0.45		rain	0.5
snow, fly-United	0.18		snow	0.2
sun, fly-Delta	0.03		y	$P(Y=y)$
rain, fly-Delta	0.05		fly-United	0.9
snow, fly-Delta	0.02		fly-Delta	0.1

Are X and Y independent here?

Expected values

- The expected value of a random variable that takes on numerical values is defined as:

$$
\mathbf{E}[X]=\sum_{x} x P(x)
$$

This is the same thing as the mean

- We can also talk about the expected value of a function of a random variable

$$
\mathbf{E}[g(X)]=\sum_{x} g(x) P(x)
$$

Expected value examples

- Shoesize

$$
\begin{aligned}
& \mathbf{E}[\text { Shoesize }] \\
= & 5 \times P(\text { Shoesize }=5)+\cdots+14 \times P(\text { Shoesize }=14)
\end{aligned}
$$

- Suppose each lottery ticket costs $\$ 1$ and the winning ticket pays out $\$ 100$. The probability that a particular ticket is the winning ticket is 0.001 .

What is the expectation of the gain?

Expected value examples

- Shoesize

$$
\begin{aligned}
& E[\text { Shoesize }] \\
= & 5 \times P(\text { Shoesize }=5)+\cdots+14 \times P(\text { Shoesize }=14)
\end{aligned}
$$

- Suppose each lottery ticket costs $\$ 1$ and the winning ticket pays out $\$ 100$. The probability that a particular ticket is the winning ticket is 0.001 .

$$
\begin{aligned}
& \mathbf{E}[\text { gain }(\text { Lottery })] \\
= & \text { gain }(\text { winning }) P(\text { winning })+\text { gain }(\text { losing }) P(\text { losing }) \\
= & (\$ 100-\$ 1) \times 0.001-\$ 1 \times 0.999 \\
= & -\$ 0.9
\end{aligned}
$$

Summary

- Axioms of probability and related properties
- Joint/marginal/conditional probabilities
- Bayes' rule for reasoning
- Independence and conditional independence
- Expectation

