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Goals for the lecture

you should understand the following concepts

• the reinforcement learning task

• Markov decision process

• value functions

• value iteration
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Reinforcement learning (RL)

Task of an agent embedded in an environment

repeat forever

1) sense world

2) reason

3) choose an action to perform

4) get feedback (usually reward = 0)

5) learn

the environment may be the physical world or an artificial one
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• world

– 30 pieces, 24 locations

• actions

– roll dice, e.g. 2, 5

– move one piece 2

– move one piece 5

• rewards

– win, lose

• TD-Gammon 0.0

– trained against itself (300,000 games)

– as good as best previous BG computer program (also by Tesauro)

• TD-Gammon 2

– beat human champion

Example: RL Backgammon Player
[Tesauro, CACM 1995]
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• world

– 19x19 locations

• actions

– Put one stone on some empty location

• rewards

– win, lose

• 2016 beats World Champion 

Lee Sedol by 4-1

• Subsequent system (AlphaGo Master/zero ) 

shows superior performance than humans

• Trained by supervised learning + 

reinforcement learning 

Example: AlphaGo
[Nature, 2017]
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Reinforcement learning

agent

environment

state reward action

s0 s1 s2

a0 a1 a2

r0 r1 r2

• set of states S

• set of actions A

• at each time t, agent observes state 

st∈ S then chooses action at ∈ A

• then receives reward rt and changes 

to state st+1
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Reinforcement learning as a 

Markov decision process (MDP)

agent

environment

state reward action

s0 s1 s2

a0 a1 a2

r0 r1 r2

• Markov assumption

• also assume reward is Markovian

Goal: learn a policy π : S → A for choosing actions that maximizes

for every possible starting state s0
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Reinforcement learning task

• Suppose we want to learn a control policy π : S → A that 

maximizes                     from every state s∈ S
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each arrow represents an action a and the associated

number represents deterministic reward r(s, a)
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VALUE FUNCTION



Value function for a policy

• given a policy π : S → A define

assuming action sequence chosen

according to π starting at state s

• we want the optimal policy π* where

 
p * = argmaxp V

p (s)   for all s

we’ll denote the value function for this optimal policy as V*(s)
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Value function for a policy π

• Suppose π is shown by red arrows, γ = 0.9
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Value function for an optimal  policy π*

• Suppose π*  is shown by red arrows, γ = 0.9
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Using a value function

If we know V*(s), r(st, a), and P(st | st-1, at-1) 

we can compute π*(s)
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Value iteration for learning V*(s)

initialize V(s) arbitrarily

loop until policy good enough

{

loop for s ∈ S

{

loop for a ∈ A

{

}

}

}
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Value iteration for learning V*(s)

• V(s) converges to V*(s)

• works even if we randomly traverse environment instead of 

looping through each state and action methodically

– but we must visit each state infinitely often

• implication: we can do online learning as an agent roams 

around its environment

• assumes we have a model of the world: i.e. know P(st | st-1, at-1) 

• What if we don’t?
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Q-LEARNING



Q functions

define a new function, closely related to V*

if agent knows Q(s, a), it can choose optimal action without 

knowing P(s’ | s, a) 

and it can learn Q(s, a) without knowing P(s’ | s, a) 
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Q values
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Q learning for deterministic worlds

for each s, a initialize table entry

observe current state s

do forever

select an action a and execute it

receive immediate reward r

observe the new state s’

update table entry

s ← s’
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Updating Q
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Q’s vs. V’s 

• Which action do we choose when we’re in a given state?

• V’s (model-based)

– need to have a ‘next state’ function to generate all possible 

states

– choose next state with highest V value.

• Q’s (model-free)

– need only know which actions are legal

– generally choose next state with highest Q value.

V V

V

Q

Q
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Exploration vs. Exploitation

• in order to learn about better alternatives, we shouldn’t always 

follow the current policy (exploitation)

• sometimes, we should select random actions (exploration)

• one way to do this: select actions probabilistically according to:

where c > 0 is a constant that determines how strongly selection 

favors actions with higher Q values
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