
Introduction to
Reinforcement Learning

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

[Based on slides from David Page, Mark Craven]

Goals for the lecture

you should understand the following concepts

• the reinforcement learning task

• Markov decision process

• value functions

• value iteration

2

Reinforcement learning (RL)

Task of an agent embedded in an environment

repeat forever

1) sense world

2) reason

3) choose an action to perform

4) get feedback (usually reward = 0)

5) learn

the environment may be the physical world or an artificial one

3

• world

– 30 pieces, 24 locations

• actions

– roll dice, e.g. 2, 5

– move one piece 2

– move one piece 5

• rewards

– win, lose

• TD-Gammon 0.0

– trained against itself (300,000 games)

– as good as best previous BG computer program (also by Tesauro)

• TD-Gammon 2

– beat human champion

Example: RL Backgammon Player
[Tesauro, CACM 1995]

4

• world

– 19x19 locations

• actions

– Put one stone on some empty location

• rewards

– win, lose

• 2016 beats World Champion

Lee Sedol by 4-1

• Subsequent system (AlphaGo Master/zero)

shows superior performance than humans

• Trained by supervised learning +

reinforcement learning

Example: AlphaGo
[Nature, 2017]

5

Reinforcement learning

agent

environment

state reward action

s0 s1 s2

a0 a1 a2

r0 r1 r2

• set of states S

• set of actions A

• at each time t, agent observes state

st∈ S then chooses action at ∈ A

• then receives reward rt and changes

to state st+1

6

Reinforcement learning as a

Markov decision process (MDP)

agent

environment

state reward action

s0 s1 s2

a0 a1 a2

r0 r1 r2

• Markov assumption

• also assume reward is Markovian

Goal: learn a policy π : S → A for choosing actions that maximizes

for every possible starting state s0

7

),|(,...),,,|(1111 tttttttt assPasassP +−−+ =

),|(,...),,,|(1111 tttttttt asrPasasrP +−−+ =

10 where...][2

2

1 +++ ++ ttt rrrE

Reinforcement learning task

• Suppose we want to learn a control policy π : S → A that

maximizes from every state s∈ S

G

0

0

0

0

0

0

0

0

100

0

0

100

0

each arrow represents an action a and the associated

number represents deterministic reward r(s, a)

8

=0

][
t

t

t rE

VALUE FUNCTION

Value function for a policy

• given a policy π : S → A define

assuming action sequence chosen

according to π starting at state s

• we want the optimal policy π* where

p * = argmaxp V

p (s) for all s

we’ll denote the value function for this optimal policy as V*(s)

10

=

=
0

][)(
t

t

t rEsV

Value function for a policy π

• Suppose π is shown by red arrows, γ = 0.9

G

0

0

0

0

0

0

0

0

100

0

0

100

0

Vπ(s) values are shown in red

100

0

90

8173

66

11

Value function for an optimal policy π*

• Suppose π* is shown by red arrows, γ = 0.9

G

0

0

0

0

0

0

0

0

100

0

0

100

0

V*(s) values are shown in red

100

0

90

10090

81

12

Using a value function

If we know V*(s), r(st, a), and P(st | st-1, at-1)

we can compute π*(s)

13

=+=

+
 Ss

ttt
Aa

t sVasssPasrs)(),|(),(maxarg)(*

1

*

Value iteration for learning V*(s)

initialize V(s) arbitrarily

loop until policy good enough

{

loop for s ∈ S

{

loop for a ∈ A

{

}

}

}

14

+
Ss

sVassPasrasQ
'

)'(),|'(),(),(

),(max)(asQsV a

Value iteration for learning V*(s)

• V(s) converges to V*(s)

• works even if we randomly traverse environment instead of

looping through each state and action methodically

– but we must visit each state infinitely often

• implication: we can do online learning as an agent roams

around its environment

• assumes we have a model of the world: i.e. know P(st | st-1, at-1)

• What if we don’t?

15

Q-LEARNING

Q functions

define a new function, closely related to V*

if agent knows Q(s, a), it can choose optimal action without

knowing P(s’ | s, a)

and it can learn Q(s, a) without knowing P(s’ | s, a)

17

)'(),(),(*

,|' sVEasrEasQ ass+

),(max)(* asQsV a),(maxarg)(* asQs a

Q values

G

0

0

0

0

0

0

0

0

100

0

0

100

0

r(s, a) (immediate reward) values

G

100

0

90

10090

81
81

72
81

81

72

90

81

Q(s, a) values

G

100

0

90

10090

81

V*(s) values

18

Q learning for deterministic worlds

for each s, a initialize table entry

observe current state s

do forever

select an action a and execute it

receive immediate reward r

observe the new state s’

update table entry

s ← s’

19

)','(ˆmax),(ˆ ' asQrasQ a+

0),(ˆ asQ

Updating Q

10072

63
81

10090

63
81

aright

20

90

}100,81,63max{9.00

)',(ˆmax),(ˆ 2'1

+

+ asQrasQ aright

Q’s vs. V’s

• Which action do we choose when we’re in a given state?

• V’s (model-based)

– need to have a ‘next state’ function to generate all possible

states

– choose next state with highest V value.

• Q’s (model-free)

– need only know which actions are legal

– generally choose next state with highest Q value.

V V

V

Q

Q

21

Exploration vs. Exploitation

• in order to learn about better alternatives, we shouldn’t always

follow the current policy (exploitation)

• sometimes, we should select random actions (exploration)

• one way to do this: select actions probabilistically according to:

where c > 0 is a constant that determines how strongly selection

favors actions with higher Q values

22

=

j

asQ

asQ

i
j

i

c

c
saP

),(ˆ

),(ˆ

)|(

