
On Disriminative vs. Generativelassi�ers: A omparison of logistiregression and naive BayesAndrew Y. NgComputer Siene DivisionUniversity of California, BerkeleyBerkeley, CA 94720 Mihael I. JordanC.S. Div. & Dept. of Stat.University of California, BerkeleyBerkeley, CA 94720AbstratWe ompare disriminative and generative learning as typi�ed bylogisti regression and naive Bayes. We show, ontrary to a widely-held belief that disriminative lassi�ers are almost always to bepreferred, that there an often be two distint regimes of per-formane as the training set size is inreased, one in whih eahalgorithm does better. This stems from the observation|whihis borne out in repeated experiments|that while disriminativelearning has lower asymptoti error, a generative lassi�er may alsoapproah its (higher) asymptoti error muh faster.1 IntrodutionGenerative lassi�ers learn a model of the joint probability, p(x; y), of the inputs xand the label y, and make their preditions by using Bayes rules to alulate p(yjx),and then piking the most likely label y. Disriminative lassi�ers model the pos-terior p(yjx) diretly, or learn a diret map from inputs x to the lass labels. Thereare several ompelling reasons for using disriminative rather than generative las-si�ers, one of whih, suintly artiulated by Vapnik [6℄, is that \one should solvethe [lassi�ation℄ problem diretly and never solve a more general problem as anintermediate step [suh as modeling p(xjy)℄." Indeed, leaving aside omputationalissues and matters suh as handling missing data, the prevailing onsensus seemsto be that disriminative lassi�ers are almost always to be preferred to generativeones.Another piee of prevailing folk wisdom is that the number of examples needed to�t a model is often roughly linear in the number of free parameters of a model.This has its theoretial basis in the observation that for \many" models, the VCdimension is roughly linear or at most some low-order polynomial in the numberof parameters (see, e.g., [1, 3℄), and it is known that sample omplexity in thedisriminative setting is linear in the VC dimension [6℄.In this paper, we study empirially and theoretially the extent to whih thesebeliefs are true. A parametri family of probabilisti models p(x; y) an be �t eitherto optimize the joint likelihood of the inputs and the labels, or �t to optimize theonditional likelihood p(yjx), or even �t to minimize the 0-1 training error obtained



by thresholding p(yjx) to make preditions. Given a lassi�er hGen �t aordingto the �rst riterion, and a model hDis �t aording to either the seond or thethird riterion (using the same parametri family of models), we all hGen andhDis a Generative-Disriminative pair. For example, if p(xjy) is Gaussian and p(y)is multinomial, then the orresponding Generative-Disriminative pair is NormalDisriminant Analysis and logisti regression. Similarly, for the ase of disreteinputs it is also well known that the naive Bayes lassi�er and logisti regressionform a Generative-Disriminative pair [4, 5℄.To ompare generative and disriminative learning, it seems natural to fous onsuh pairs. In this paper, we onsider the naive Bayes model (for both disrete andontinuous inputs) and its disriminative analog, logisti regression/linear lassi�-ation, and show: (a) The generative model does indeed have a higher asymptotierror (as the number of training examples beomes large) than the disriminativemodel, but (b) The generative model may also approah its asymptoti error muhfaster than the disriminative model|possibly with a number of training examplesthat is only logarithmi, rather than linear, in the number of parameters. Thissuggests|and our empirial results strongly support|that, as the number of train-ing examples is inreased, there an be two distint regimes of performane, the�rst in whih the generative model has already approahed its asymptoti error andis thus doing better, and the seond in whih the disriminative model approahesits lower asymptoti error and does better.2 PreliminariesWe onsider a binary lassi�ation task, and begin with the ase of disrete data.Let X = f0; 1gn be the n-dimensional input spae, where we have assumed binaryinputs for simpliity (the generalization o�ering no diÆulties). Let the outputlabels be Y = fT; Fg, and let there be a joint distribution D over X �Y from whiha training set S = fx(i); y(i)gmi=1 of m iid examples is drawn. The generative naiveBayes lassi�er uses S to alulate estimates p̂(xijy) and p̂(y) of the probabilitiesp(xijy) and p(y), as follows:p̂(xi = 1jy = b) = #Sfxi=1;y=bg+l#Sfy=bg+2l (1)(and similarly for p̂(y = b),) where #Sf�g ounts the number of ourrenes of anevent in the training set S. Here, setting l = 0 orresponds to taking the empirialestimates of the probabilities, and l is more traditionally set to a positive value suhas 1, whih orresponds to using Laplae smoothing of the probabilities. To lassifya test example x, the naive Bayes lassi�er hGen : X 7! Y predits hGen(x) = T ifand only if the following quantity is positive:lGen(x) = log (Qni=1 p̂(xijy = T ))p̂(y = T )(Qni=1 p̂(xijy = F ))p̂(y = F ) = nXi=1 log p̂(xijy = T )p̂(xijy = F ) + log p̂(y = T )p̂(y = F ) : (2)In the ase of ontinuous inputs, almost everything remains the same, exept thatwe now assume X = [0; 1℄n, and let p̂(xijy = b) be parameterized as a univariateGaussian distribution with parameters �̂ijy=b and �̂2i (note that the �̂'s, but notthe �̂'s, depend on y). The parameters are �t via maximum likelihood, so forexample �̂ijy=b is the empirial mean of the i-th oordinate of all the examples inthe training set with label y = b. Note that this method is also equivalent to NormalDisriminant Analysis assuming diagonal ovariane matries. In the sequel, we alsolet �ijy=b = E[xijy = b℄ and �2i = Ey[Var(xijy)℄ be the \true" means and varianes(regardless of whether the data are Gaussian or not).In both the disrete and the ontinuous ases, it is well known that the disrimina-tive analog of naive Bayes is logisti regression. This model has parameters [�; �℄,and posits that p(y = T jx;�; �) = 1=(1+ exp(��Tx� �)). Given a test example x,



the disriminative logisti regression lassi�er hDis : X 7! Y predits hDis(x) = T ifand only if the linear disriminant funtionlDis(x) =Pni=1 �ixi + � (3)is positive. Being a disriminative model, the parameters [�; �℄ an be �t either tomaximize the onditional likelikood on the training setPni=1 log p(y(i)jx(i);�; �), orto minimize 0-1 training errorPni=1 1fhDis(x(i)) 6= y(i)g, where 1f�g is the indiatorfuntion (1fTrueg = 1; 1fFalseg = 0). Insofar as the error metri is 0-1 lassi�ationerror, we view the latter alternative as being more truly in the \spirit" of disrim-inative learning, though the former is also frequently used as a omputationallyeÆient approximation to the latter. In this paper, we will largely ignore the di�er-ene between these two versions of disriminative learning and, with some abuse ofterminology, will loosely use the term \logisti regression" to refer to either, thoughour formal analyses will fous on the latter method.Finally, let H be the family of all linear lassi�ers (maps from X to Y); and given alassi�er h : X 7! Y , de�ne its generalization error to be "(h) = Pr(x;y)�D[h(x) 6= y℄.3 Analysis of algorithmsWhen D is suh that the two lasses are far from linearly separable, neither logistiregression nor naive Bayes an possibly do well, sine both are linear lassi�ers.Thus, to obtain non-trivial results, it is most interesting to ompare the performaneof these algorithms to their asymptoti errors (f. the agnosti learning setting).More preisely, let hGen;1 be the population version of the naive Bayes lassi�er; i.e.hGen;1 is the naive Bayes lassi�er with parameters p̂(xjy) = p(xjy); p̂(y) = p(y).Similarly, let hDis;1 be the population version of logisti regression. The followingtwo propositions are then ompletely straightforward.Proposition 1 Let hGen and hDis be any generative-disriminative pair of las-si�ers, and hGen;1 and hDis;1 be their asymptoti/population versions. Then1"(hDis;1) � "(hGen;1).Proposition 2 Let hDis be logisti regression in n-dimensions. Then with highprobability "(hDis) � "(hDis;1) +O �p nm log mn �Thus, for "(hDis) � "(hDis;1)+�0 to hold with high probability (here, �0 > 0 is some�xed onstant), it suÆes to pik m = 
(n).Proposition 1 states that aymptotially, the error of the disriminative logisti re-gression is smaller than that of the generative naive Bayes. This is easily shownby observing that, sine "(hDis) onverges to infh2H "(h) (where H is the lass ofall linear lassi�ers), it must therefore be asymptotially no worse than the linearlassi�er piked by naive Bayes. This proposition also provides a basis for whatseems to be the widely held belief that disriminative lassi�ers are better thangenerative ones.Proposition 2 is another standard result, and is a straightforward appliation ofVapnik's uniform onvergene bounds to logisti regression, and using the fat thatH has VC dimension n. The seond part of the proposition states that the sampleomplexity of disriminative learning|that is, the number of examples needed toapproah the asymptoti error|is at most on the order of n. Note that the worstase sample omplexity is also lower-bounded by order n [6℄.1Under a tehnial assumption (that is true for most lassi�ers, inluding logisti re-gression) that the family of possible lassi�ers hDis (in the ase of logisti regression, thisis H) has �nite VC dimension.



The piture for disriminative learning is thus fairly well-understood: The erroronverges to that of the best linear lassi�er, and onvergene ours after on theorder of n examples. How about generative learning, spei�ally the ase of thenaive Bayes lassi�er? We begin with the following lemma.Lemma 3 Let any �1; Æ > 0 and any l � 0 be �xed. Assume that for some �xed�0 > 0, we have that �0 � p(y = T ) � 1� �0. Let m = O �(1=�21) log(n=Æ)�. Thenwith probability at least 1� Æ:1. In ase of disrete inputs, jp̂(xijy = b) � p(xijy = b)j � �1 and jp̂(y =b)� p(y = b)j � �1, for all i = 1; : : : ; n and b 2 Y.2. In the ase of ontinuous inputs, j�̂ijy=b � �ijy=bj � �1, j�̂2i � �2i j � �1, andjp̂(y = b)� p(y = b)j � �1 for all i = 1; : : : ; n and b 2 Y.Proof (sketh). Consider the disrete ase, and let l = 0 for now. Let �1 � �0=2.By the Cherno� bound, with probability at least 1 � Æ1 = 1 � 2 exp(�2�21m), thefration of positive examples will be within �1 of p(y = T ), whih implies jp̂(y =b) � p(y = b)j � �1, and we have at least m positive and m negative examples,where  = �0 � �1 = 
(1). So by the Cherno� bound again, for spei� i, b, thehane that jp̂(xijy = b)� p(xijy = b)j > �1 is at most Æ2 = 2 exp(�2�21m). Sinethere are 2n suh probabilities, the overall hane of error, by the Union bound, isat most Æ1 +2nÆ2. Substituting in Æ1 and Æ2's de�nitions, we see that to guaranteeÆ1+2nÆ2 � Æ, it suÆes that m is as stated. Lastly, smoothing (l > 0) adds at mosta small, O(1=m) perturbation to these probabilities, and using the same argumentas above with (say) �1=2 instead of �1, and arguing that this O(1=m) perturbationis at most �1=2 (whih it is as m is at least order 1=�21), again gives the result. Theresult for the ontinuous ase is proved similarly using a Cherno�-bounds basedargument (and the assumption that xi 2 [0; 1℄). �Thus, with a number of samples that is only logarithmi, rather than linear, in n, theparameters of the generative lassi�er hGen are uniformly lose to their asymptotivalues in hGen;1. Is is tempting to onlude therefore that "(hGen), the error of thegenerative naive Bayes lassi�er, also onverges to its asymptoti value of "(hGen;1)after this many examples, implying only O(logn) examples are required to �t anaive Bayes model. We will shortly establish some simple onditions under whihthis intuition is indeed orret. Note that this implies that, even though naive Bayesonverges to a higher asymptoti error of "(hGen;1) ompared to logisti regression's"(hDis;1), it may also approah it signi�antly faster|after O(logn), rather thanO(n), training examples.One way of showing "(hGen) approahes "(hGen;1) is by showing that the parame-ters' onvergene implies that hGen is very likely to make the same preditions ashGen;1. Reall hGen makes its preditions by thresholding the disriminant fun-tion lGen de�ned in (2). Let lGen;1 be the orresponding disriminant funtionused by hGen;1. On every example on whih both lGen and lGen;1 fall on the sameside of zero, hGen and hGen;1 will make the same predition. Moreover, as long aslGen;1(x) is, with fairly high probability, far from zero, then lGen(x), being a smallperturbation of lGen;1(x), will also be usually on the same side of zero as lGen;1(x).Theorem 4 De�ne G(�) = Pr(x;y)�D[(lGen;1(x) 2 [0; �n℄ ^ y = T ) _ (lGen;1(x) 2[��n; 0℄ ^ y = F )℄. Assume that for some �xed �0 > 0, we have �0 � p(y = T ) �1 � �0, and that either �0 � p(xi = 1jy = b) � 1 � �0 for all i; b (in the ase ofdisrete inputs), or �2i � �0 (in the ontinuous ase). Then with high probability,"(hGen) � "(hGen;1) +G�O �q 1m logn�� : (4)Proof (sketh). "(hGen) � "(hGen;1) is upperbounded by the hane thathGen;1 orretly lassi�es a randomly hosen example, but hGen mislassi�es it.



Lemma 3 ensures that, with high probability, all the parameters of hGen are withinO(p(logn)=m) of those of hGen;1. This in turn implies that every one of the n+1terms in the sum in lGen (as in Equation 2) is within O(p(logn)=m) of the orre-sponding term in lGen;1, and hene that jlGen(x)� lGen;1(x)j � O(np(logn)=m).Letting � = O(p(logn)=m), we therefore see that it is possible for hGen;1 to be or-ret and hGen to be wrong on an example (x; y) only if y = T and lGen;1(x) 2 [0; �n℄(so that it is possible that lGen;1(x) � 0, lGen(x) � 0), or if y = F andlGen;1(x) 2 [��n; 0℄. The probability of this is exatly G(�), whih therefore up-perbounds "(hGen)� "(hGen;1). �The key quantity in the Theorem is the G(�), whih must be small when � issmall in order for the bound to be non-trivial. Note G(�) is upper-bounded byPrx[lGen;1(x) 2 [��n; �n℄℄|the hane that lGen;1(x) (a random variable whosedistribution is indued by x � D) falls near zero. To gain intuition about the salingof these random variables, onsider the following:Proposition 5 Suppose that, for at least an 
(1) fration of the features i (i =1; : : : ; n), it holds true that jp(xi = 1jy = T ) � p(xi = 1jy = F )j �  for some�xed  > 0 (or j�ijy=T � �ijy=F j �  in the ase of ontinuous inputs). ThenE[lGen;1(x)jy = T ℄ = 
(n), and �E[lGen;1(x)jy = F ℄ = 
(n).Thus, as long as the lass label gives information about an 
(1) fration of thefeatures (or less formally, as long as most of the features are \relevant" to the lasslabel), the expeted value of jlGen;1(x)j will be 
(n). The proposition is easilyproved by showing that, onditioned on (say) the event y = T , eah of the termsin the summation in lGen;1(x) (as in Equation (2), but with p̂'s replaed by p's)has non-negative expetation (by non-negativity of KL-divergene), and moreoveran 
(1) fration of them have expetation bounded away from zero.Proposition 5 guarantees that jlGen;1(x)j has large expetation, though what wewant in order to bound G is atually slightly stronger, namely that the randomvariable jlGen;1(x)j further be large/far from zero with high probability. Thereare several ways of deriving suÆient onditions for ensuring that G is small. Oneway of obtaining a loose bound is via the Chebyshev inequality. For the rest ofthis disussion, let us for simpliity impliitly ondition on the event that a testexample x has label T . The Chebyshev inequality implies that Pr[lGen;1(x) �E[lGen;1(x)℄ � t℄ � Var(lGen;1(x))=t2. Now, lGen;1(x) is the sum of n randomvariables (ignoring the term involving the priors p(y)). If (still onditioned on y),these n random variables are independent (i.e. if the \naive Bayes assumption,"that the xi's are onditionally independent given y, holds), then its variane is O(n);even if the n random variables were not ompletely independent, the variane maystill be not muh larger than O(n) (and may even be smaller, depending on thesigns of the orrelations), and is at most O(n2). So, if E[lGen;1(x)jy = T ℄ = �n (aswould be guaranteed by Proposition 5) for some � > 0, by setting t = (� � �)n,Chebyshev's inequality gives Pr[lGen;1(x) � �n℄ � O(1=(�� �)2n�) (� < �), where� = 0 in the worst ase, and � = 1 in the independent ase. This thus givesa bound for G(�), but note that it will frequently be very loose. Indeed, in theunrealisti ase in whih the naive Bayes assumption really holds, we an obtainthe muh stronger (via the Cherno� bound) G(�) � exp(�O((� � �)2n)), whih isexponentially small in n. In the ontinuous ase, if lGen;1(x) has a density that,within some small interval [��n; �n℄, is uniformly bounded by O(1=n), then we alsohave G(�) = O(�). In any ase, we also have the following Corollary to Theorem 4.Corollary 6 Let the onditions of Theorem 4 hold, and suppose that G(�) � �0=2+F (�) for some funtion F (�) (independent of n) that satis�es F (�) ! 0 as � ! 0,and some �xed �0 > 0. Then for "(hGen) � "(hGen;1) + �0 to hold with high
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Figure 1: Results of 15 experiments on datasets from the UCI Mahine Learningrepository. Plots are of generalization error vs. m (averaged over 1000 randomtrain/test splits). Dashed line is logisti regression; solid line is naive Bayes.



probability, it suÆes to pik m = 
(logn).Note that the previous disussion implies that the preonditions of the Corollarydo indeed hold in the ase that the naive Bayes (and Proposition 5's) assumptionholds, for any onstant �0 so long as n is large enough that �0 � exp(�O(�2n))(and similarly for the bounded Var(lGen;1(x)) ase, with the more restritive �0 �O(1=(�2n�))). This also means that either of these (the latter also requiring � > 0)is a suÆient ondition for the asymptoti sample omplexity to be O(logn).4 ExperimentsThe results of the previous setion imply that even though the disriminative logis-ti regression algorithm has a lower asymptoti error, the generative naive Bayeslassi�er may also onverge more quikly to its (higher) asymptoti error. Thus, asthe number of training examples m is inreased, one would expet generative naiveBayes to initially do better, but for disriminative logisti regression to eventuallyath up to, and quite likely overtake, the performane of naive Bayes.To test these preditions, we performed experiments on 15 datasets, 8 with ontin-uous inputs, 7 with disrete inputs, from the UCI Mahine Learning repository.2The results of these experiments are shown in Figure 1. We �nd that the theoretialpreditions are borne out surprisingly well. There are a few ases in whih logistiregression's performane did not ath up to that of naive Bayes, but this is observedprimarily in partiularly small datasets in whih m presumably annot grow largeenough for us to observe the expeted dominane of logisti regression in the largem limit.5 DisussionEfron [2℄ also analyzed logisti regression and Normal Disriminant Analysis (forontinuous inputs), and onluded that the former was only asymptotially veryslightly (1/3{1/2 times) less statistially eÆient. This is in marked ontrast to ourresults, and one key di�erene is that, rather than assuming P (xjy) is Gaussian witha diagonal ovariane matrix (as we did), Efron onsidered the ase where P (xjy) ismodeled as Gaussian with a full onvariane matrix. In this setting, the estimatedovariane matrix is singular if we have fewer than linear in n training examples, soit is no surprise that Normal Disriminant Analysis annot learn muh faster thanlogisti regression here. A seond important di�erene is that Efron onsideredonly the speial ase in whih the P (xjy) is truly Gaussian. Suh an asymptotiomparison is not very useful in the general ase, sine the only possible onlu-sion, if "(hDis;1) < "(hGen;1), is that logisti regression is the superior algorithm.In ontrast, as we saw previously, it is in the non-asymptoti ase that the mostinteresting \two-regime" behavior is observed.Pratial lassi�ation algorithms generally involve some form of regularization|inpartiular logisti regression an often be improved upon in pratie by tehniques2To maximize the onsisteny with the theoretial disussion, these experiments avoideddisrete/ontinuous hybrids by onsidering only the disrete or only the ontinuous-valuedinputs for a dataset where neessary. Train/test splits were random subjet to there beingat least one example of eah lass in the training set, and ontinuous-valued inputs were alsoresaled to [0; 1℄ if neessary. In the ase of linearly separable datasets, logisti regressionmakes no distintion between the many possible separating planes. In this setting we usedan MCMC sampler to pik a lassi�er randomly from them (i.e., so the errors reportedare empirial averages over the separating hyperplanes). Our implementation of NormalDisriminant Analysis also used the (standard) trik of adding � to the diagonal of theovariane matrix to ensure invertibility, and for naive Bayes we used l = 1.



suh as shrinking the parameters via an L1 onstraint, imposing a margin onstraintin the separable ase, or various forms of averaging. Suh regularization tehniquesan be viewed as hanging the model family, however, and as suh they are largelyorthogonal to the analysis in this paper, whih is based on examining partiularlylear ases of Generative-Disriminative model pairings. By developing a learerunderstanding of the onditions under whih pure generative and disriminativeapproahes are most suessful, we should be better able to design hybrid lassi�ersthat enjoy the best properties of either aross a wider range of onditions.Finally, while our disussion has foused on naive Bayes and logisti regression, it isstraightforward to extend the analyses to several other models, inluding generative-disriminative pairs generated by using a �xed-struture, bounded fan-in Bayesiannetwork model for P (xjy) (of whih naive Bayes is a speial ase).AknowledgmentsWe thank Andrew MCallum for helpful onversations. A. Ng is supported by aMirosoft Researh fellowship. This work was also supported by a grant from IntelCorporation, NSF grant IIS-9988642, and ONR MURI N00014-00-1-0637.Referenes[1℄ M. Anthony and P. Bartlett. Neural Network Learning: Theoretial Foundations. Cam-bridge University Press, 1999.[2℄ B. Efron. The eÆieny of logisti regression ompared to Normal Disriminant Anal-ysis. Journ. of the Amer. Statist. Asso., 70:892{898, 1975.[3℄ P. Goldberg and M. Jerrum. Bounding the VC dimension of onept lasses parame-terized by real numbers. Mahine Learning, 18:131{148, 1995.[4℄ G.J. MLahlan. Disriminant Analysis and Statistial Pattern Reognition. Wiley,New York, 1992.[5℄ Y. D. Rubinstein and T. Hastie. Disriminative vs. informative learning. In Proeedingsof the Third International Conferene on Knowledge Disovery and Data Mining, pages49{53. AAAI Press, 1997.[6℄ V. N. Vapnik. Statistial Learning Theory. John Wiley & Sons, 1998.


