Neural Network Part 3: Convolutional Neural Networks

Yingyu Liang Computer Sciences 760 Fall 2017

http://pages.cs.wisc.edu/~yliang/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, Tom Dietterich, Pedro Domingos, and Kaiming He.

Goals for the lecture

you should understand the following concepts

- convolutional neural networks (CNN)
- convolution and its advantage
- pooling and its advantage

Convolutional neural networks

- Strong empirical application performance
- Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers

 $h = \sigma(W^T x + b)$

for a specific kind of weight matrix W

Convolution

Convolution: math formula

• Given functions u(t) and w(t), their convolution is a function s(t)

 $s(t) = \int u(a)w(t-a)da$

• Written as

$$s = (u * w)$$
 or $s(t) = (u * w)(t)$

Convolution: discrete version

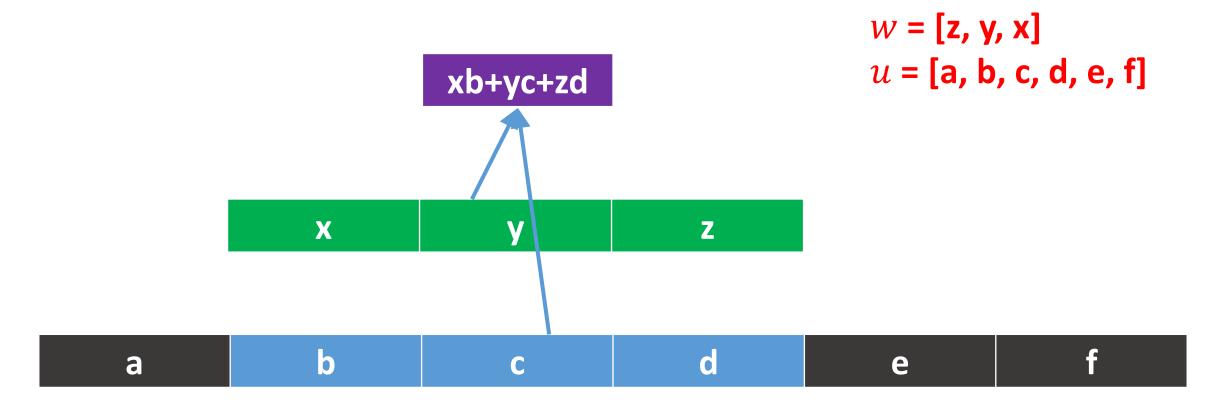
• Given array u_t and w_t , their convolution is a function s_t

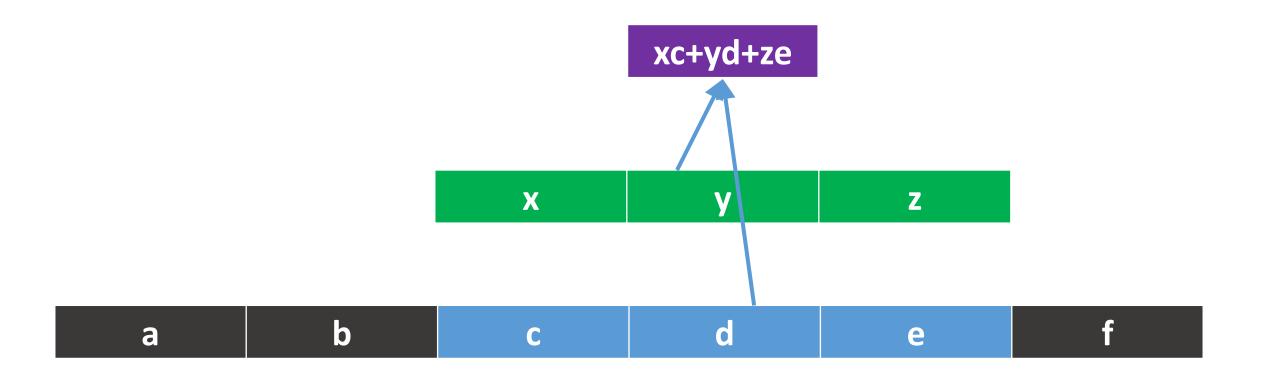
$$s_t = \sum_{a=-\infty}^{+\infty} u_a w_{t-a}$$

• Written as

$$s = (u * w)$$
 or $s_t = (u * w)_t$

• When u_t or w_t is not defined, assumed to be 0





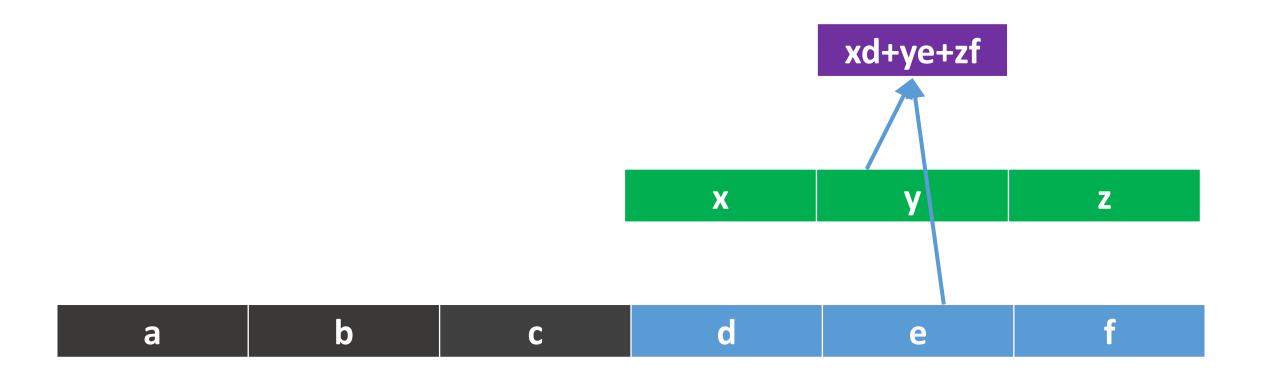


Illustration 1: boundary case

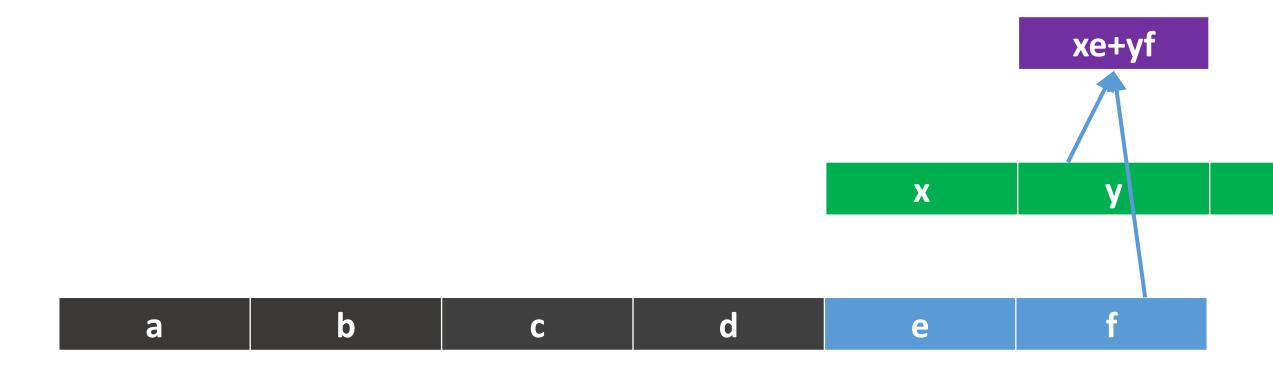


Illustration 1 as matrix multiplication

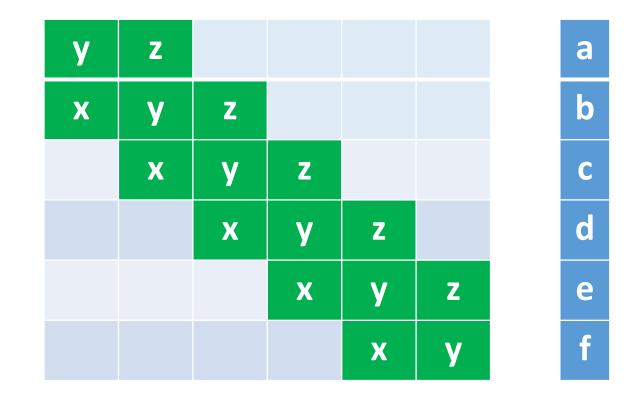
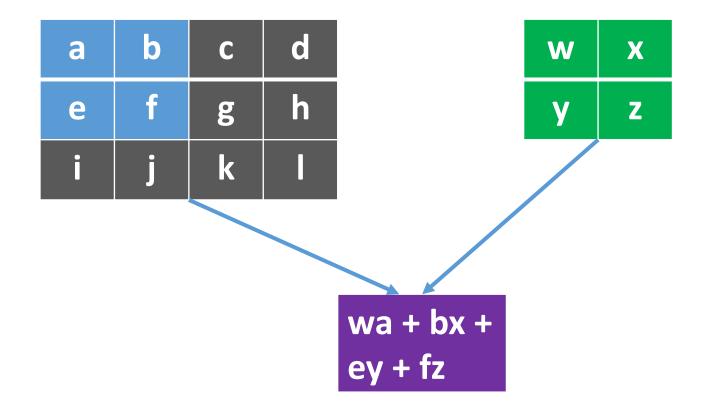
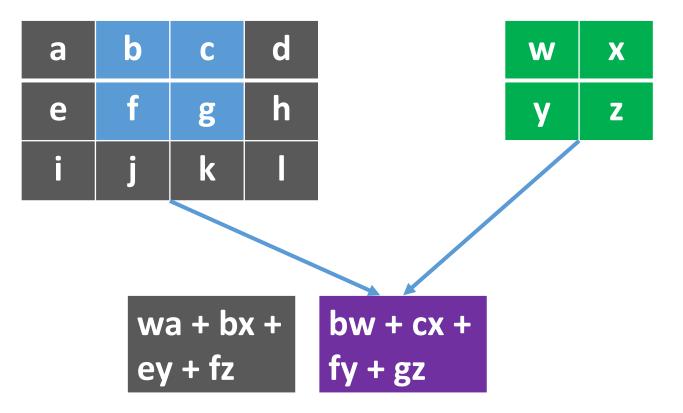
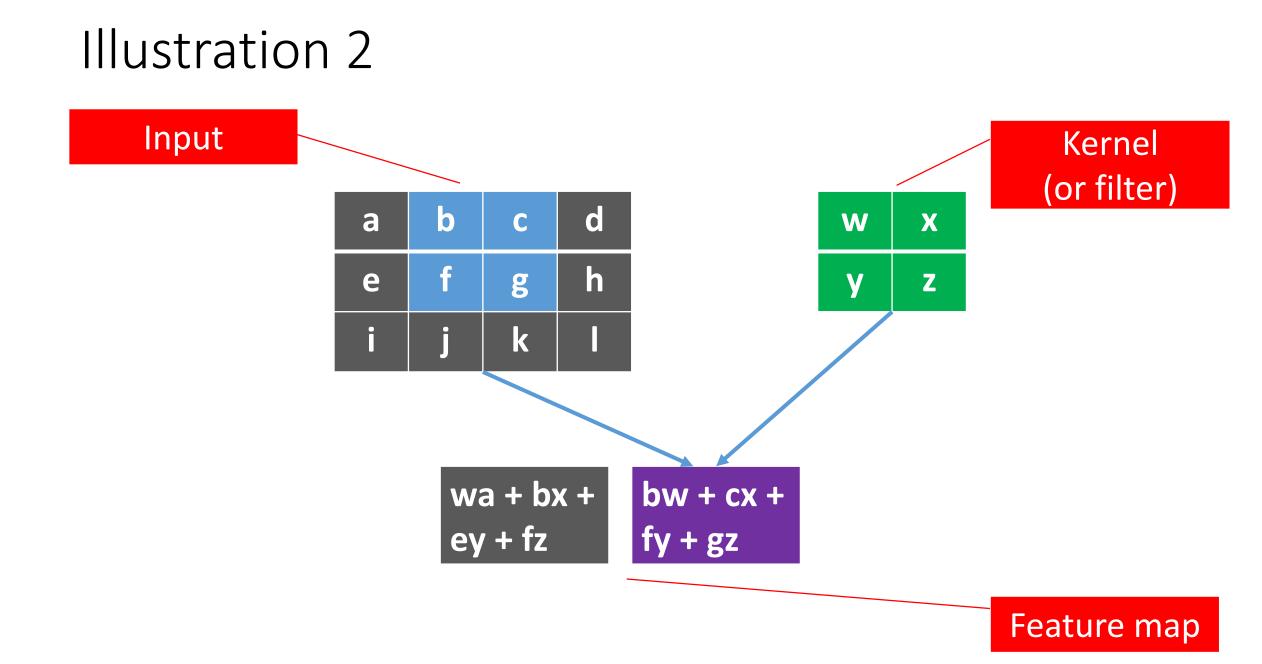


Illustration 2: two dimensional case

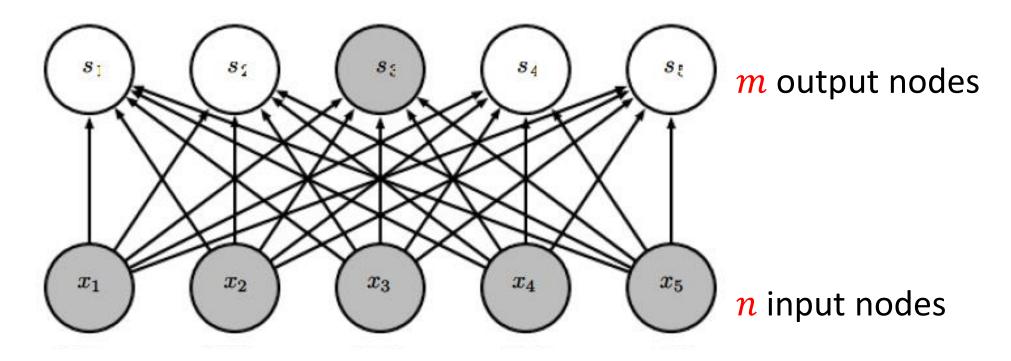






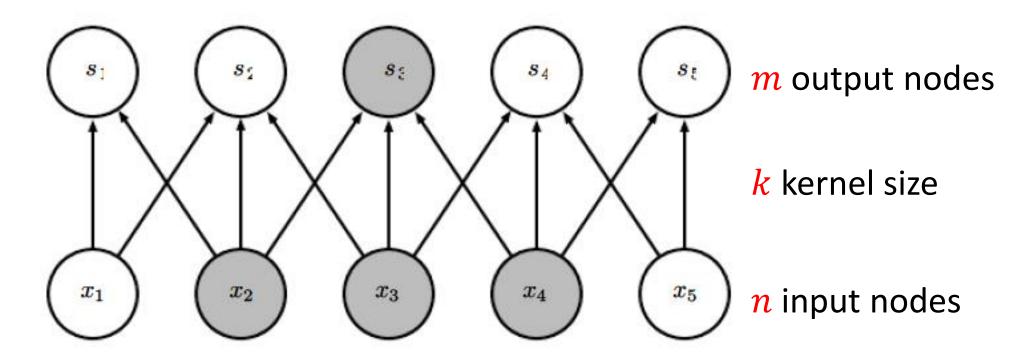
Advantage: sparse interaction

Fully connected layer, $m \times n$ edges



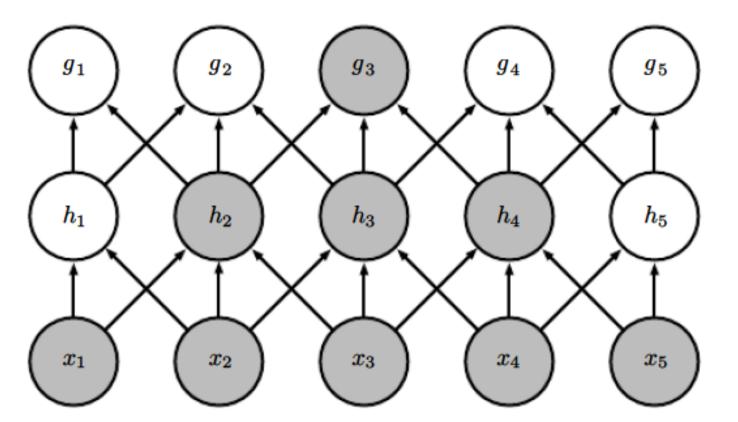
Advantage: sparse interaction

Convolutional layer, $\leq m \times k$ edges

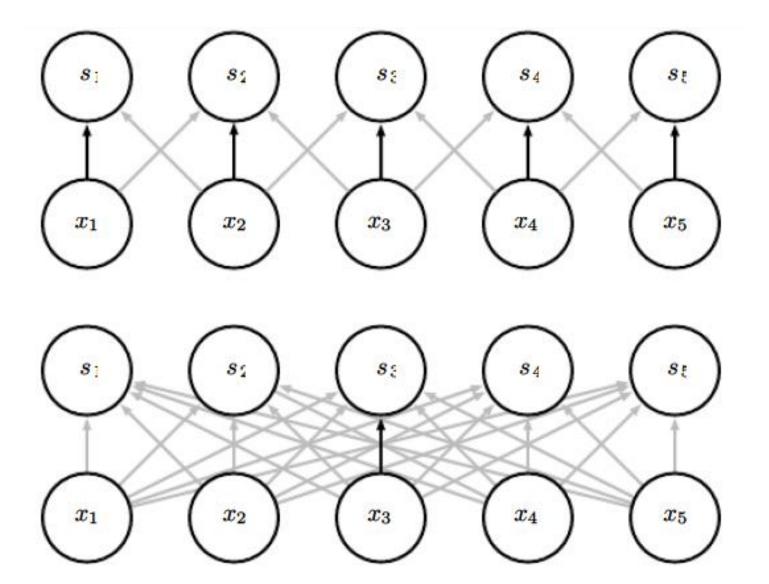


Advantage: sparse interaction

Multiple convolutional layers: larger receptive field



Advantage: parameter sharing/weight tying

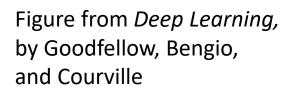


The same kernel are used repeatedly. E.g., the black edge is the same weight in the kernel.

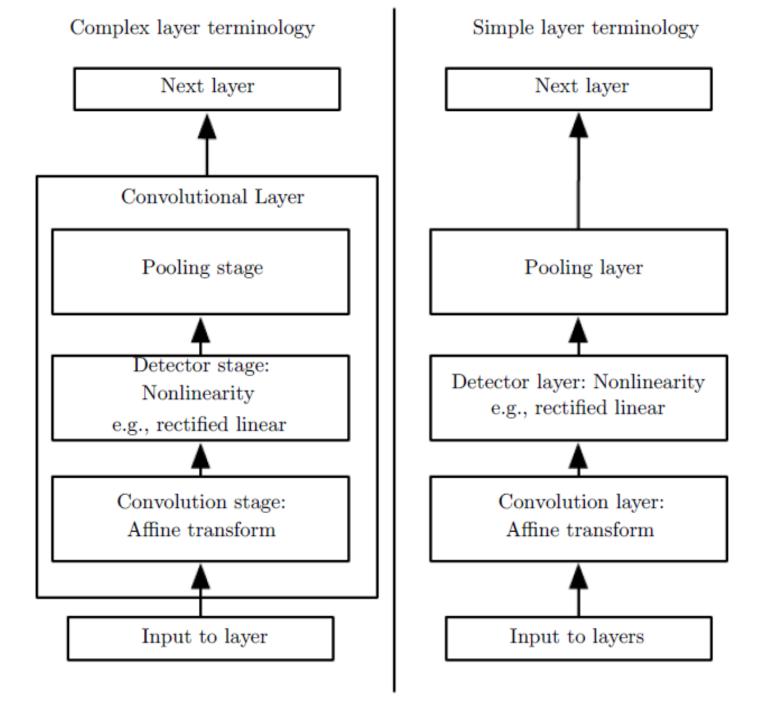
Advantage: equivariant representations

- Equivariant: transforming the input = transforming the output
- Example: input is an image, transformation is shifting
- Convolution(shift(input)) = shift(Convolution(input))
- Useful when care only about the existence of a pattern, rather than the location

Pooling

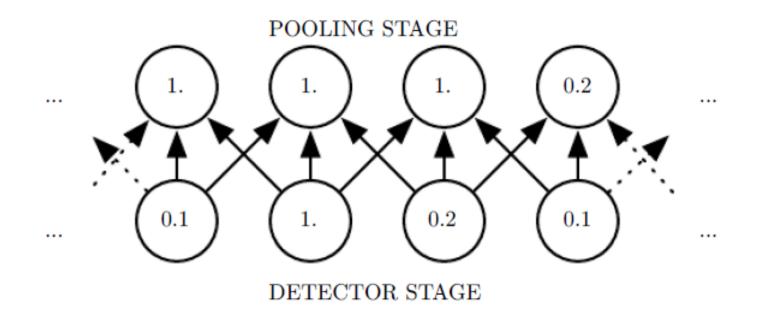


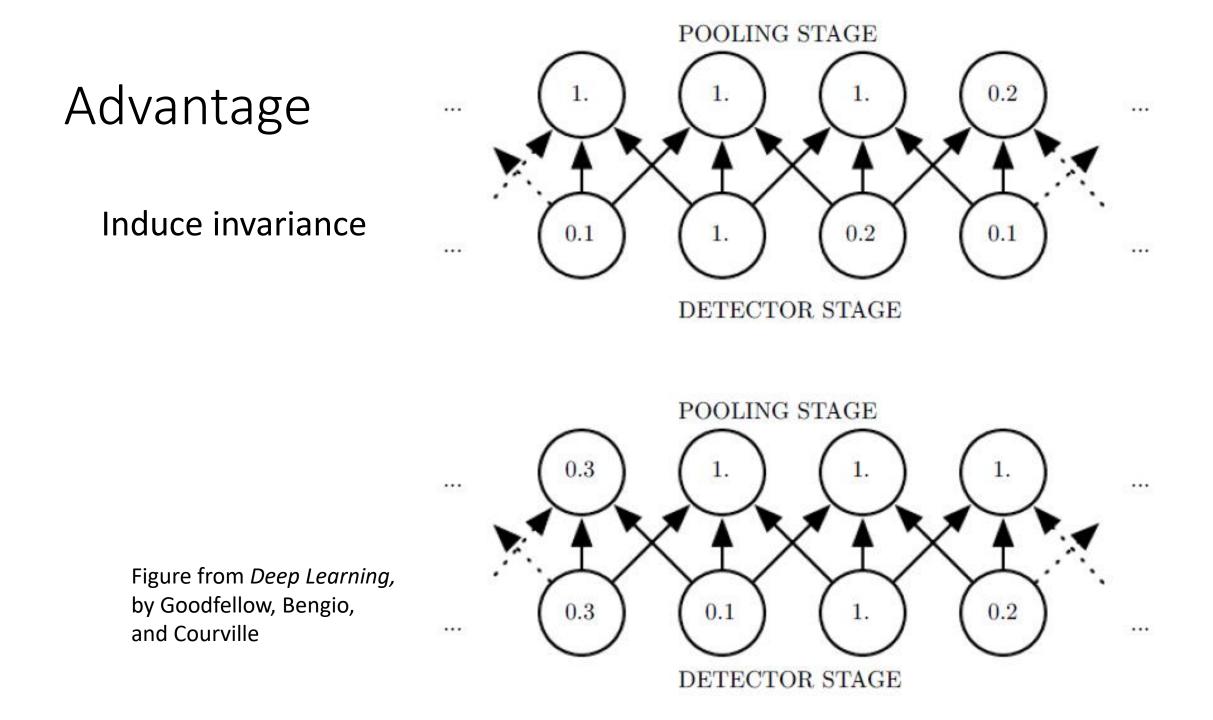
Terminology



Pooling

• Summarizing the input (i.e., output the max of the input)





Motivation from neuroscience

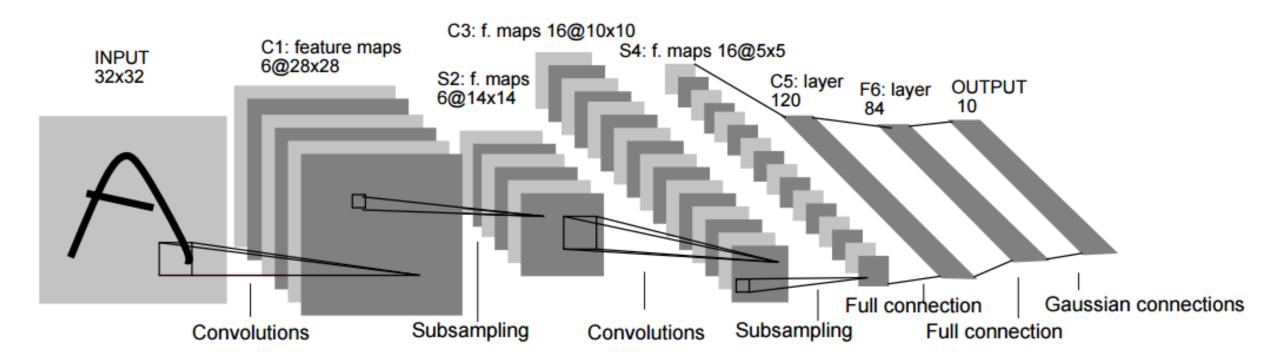
- David Hubel and Torsten Wiesel studied early visual system in human brain (V1 or primary visual cortex), and won Nobel prize for this
- V1 properties
 - 2D spatial arrangement
 - Simple cells: inspire convolution layers
 - Complex cells: inspire pooling layers

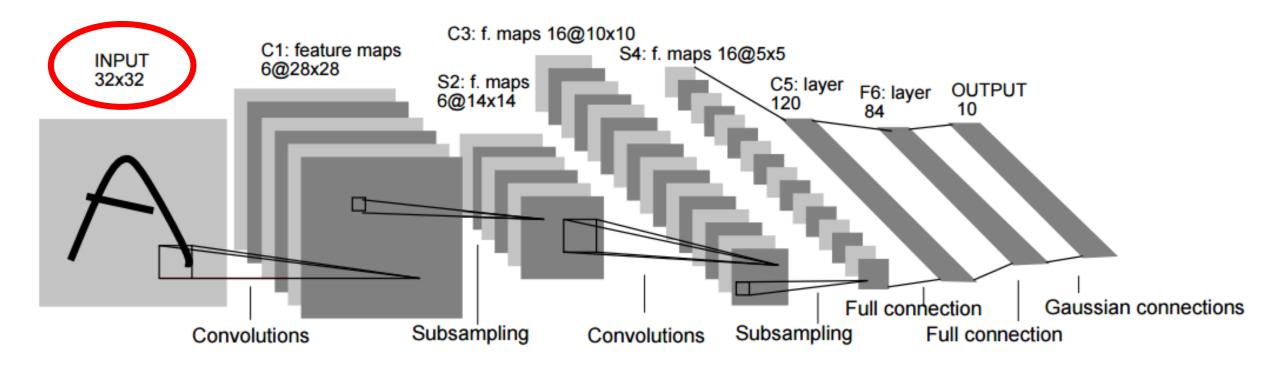
Example: LeNet

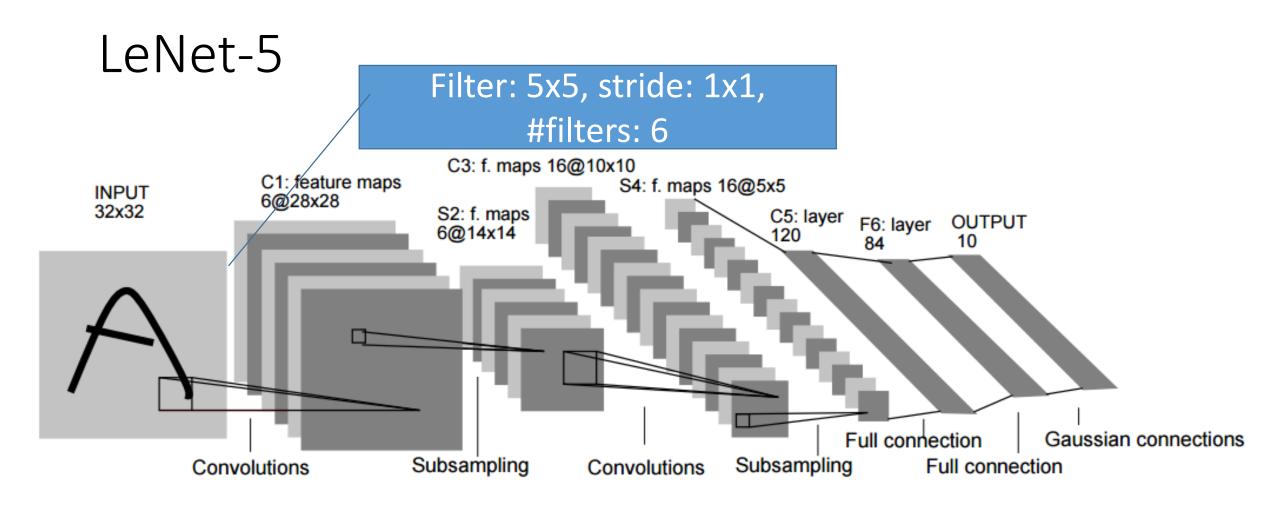
• Proposed in "Gradient-based learning applied to document recognition", by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998

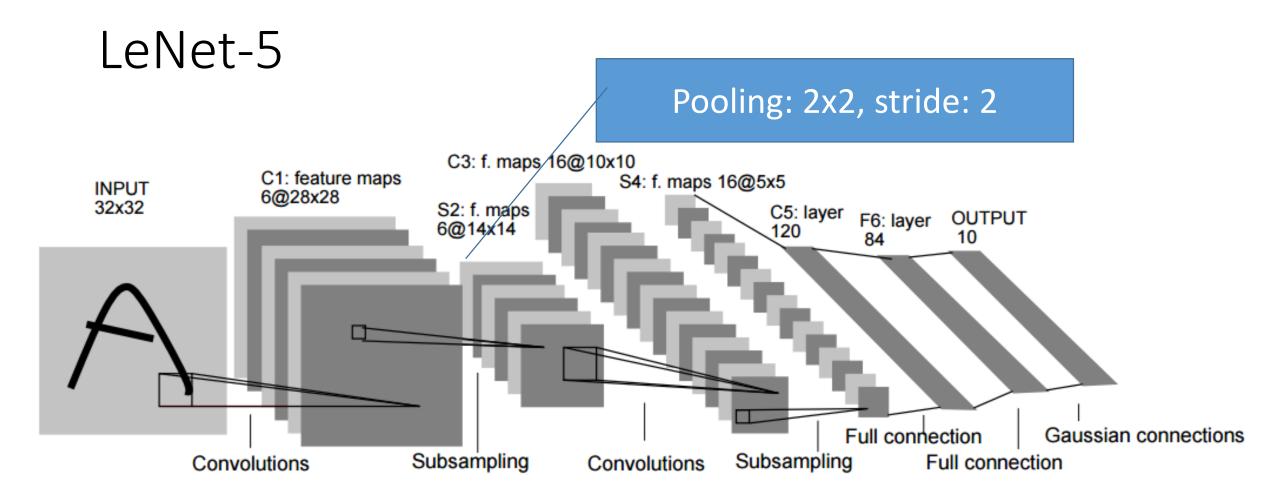
- Proposed in "Gradient-based learning applied to document recognition", by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998
- Apply convolution on 2D images (MNIST) and use backpropagation

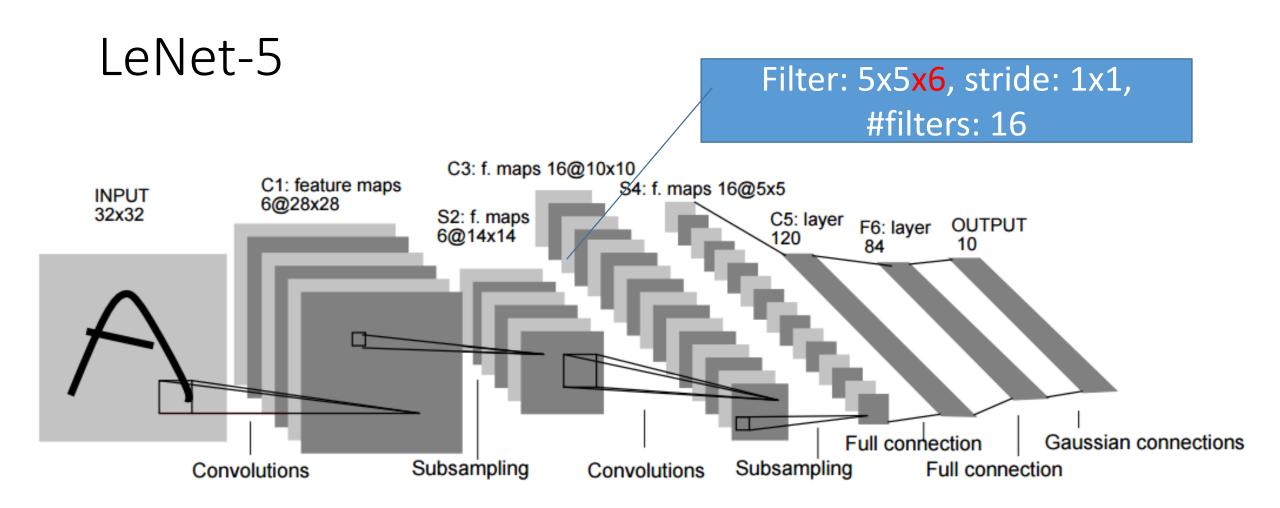
- Proposed in "Gradient-based learning applied to document recognition", by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998
- Apply convolution on 2D images (MNIST) and use backpropagation
- Structure: 2 convolutional layers (with pooling) + 3 fully connected layers
 - Input size: 32x32x1
 - Convolution kernel size: 5x5
 - Pooling: 2x2

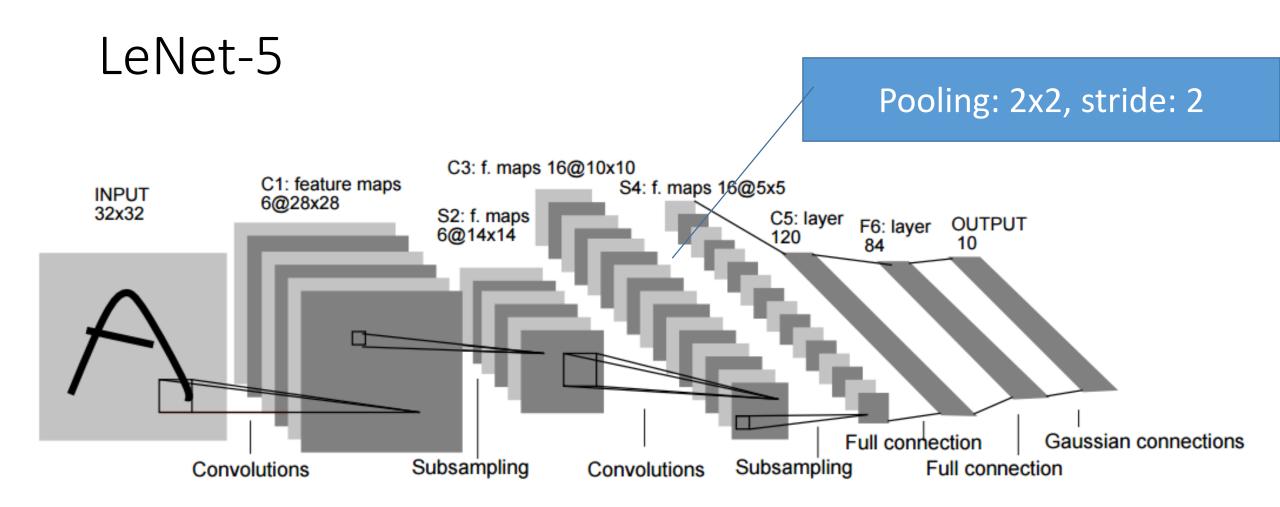


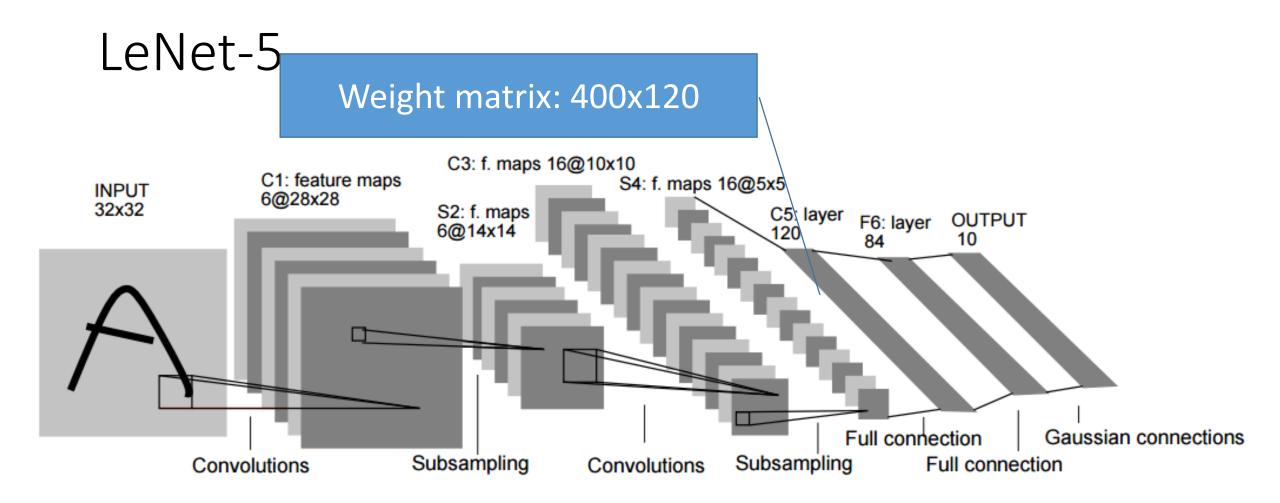


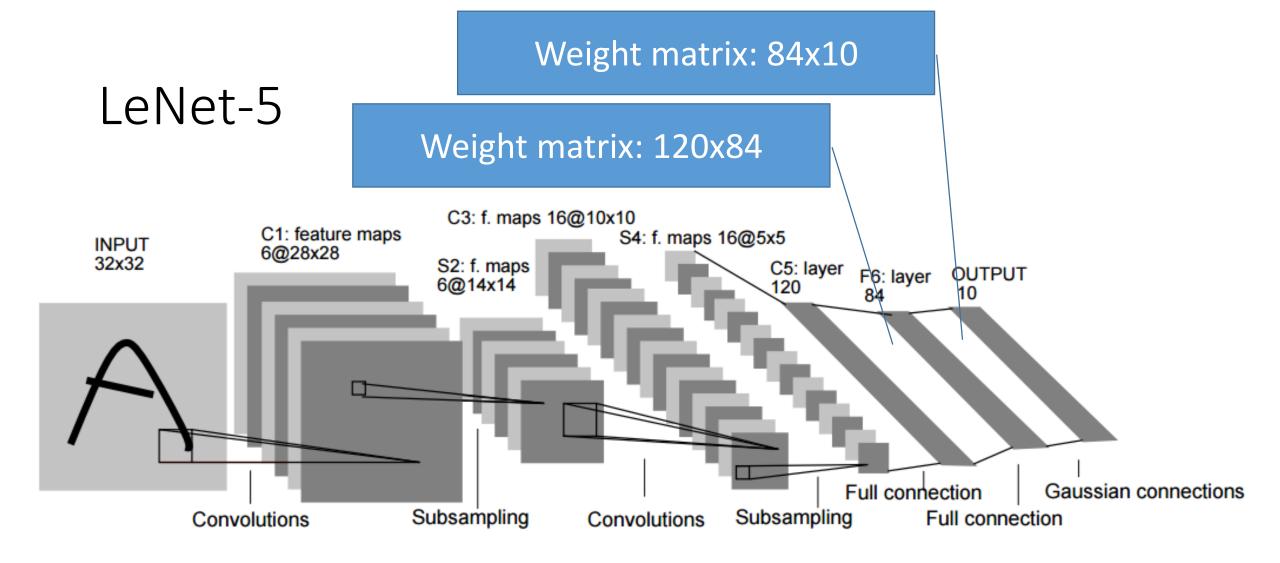








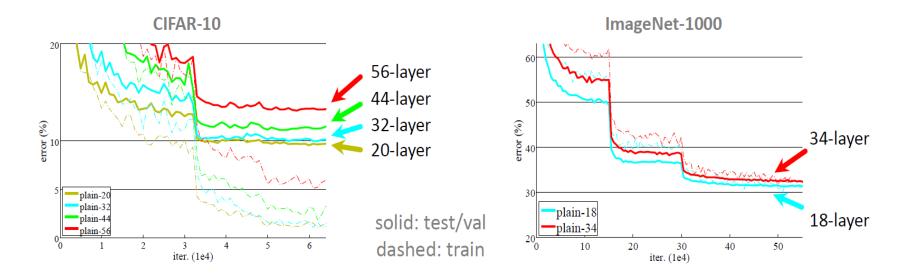




Example: ResNet

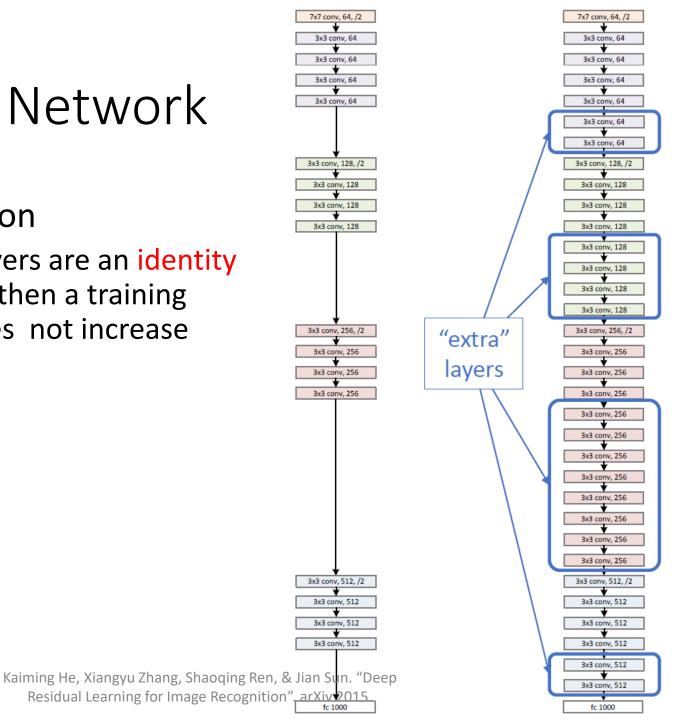
Plain Network

- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets

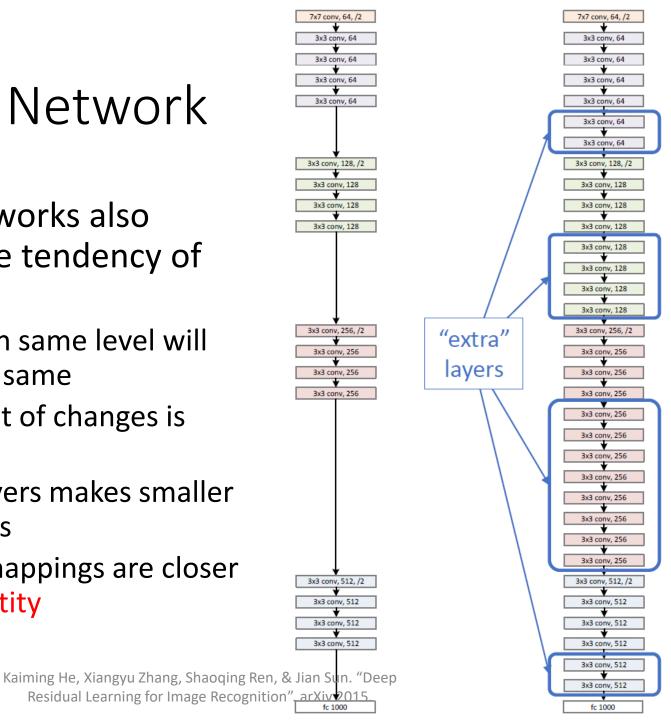


Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

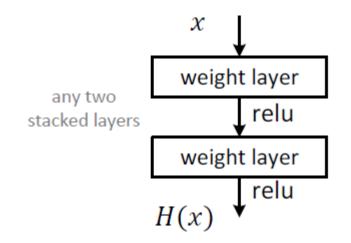
- Naïve solution
 - If extra layers are an identity mapping, then a training errors does not increase



- Deeper networks also maintain the tendency of results
 - Features in same level will be almost same
 - An amount of changes is fixed
 - Adding layers makes smaller differences
 - Optimal mappings are closer to an identity

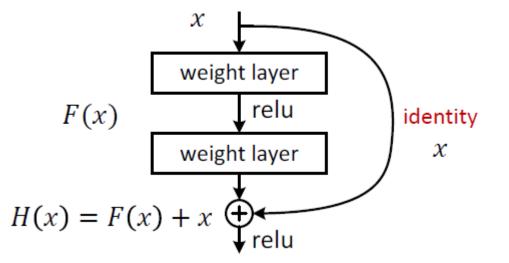


- Plain block
 - Difficult to make identity mapping because of multiple non-linear layers



Residual block

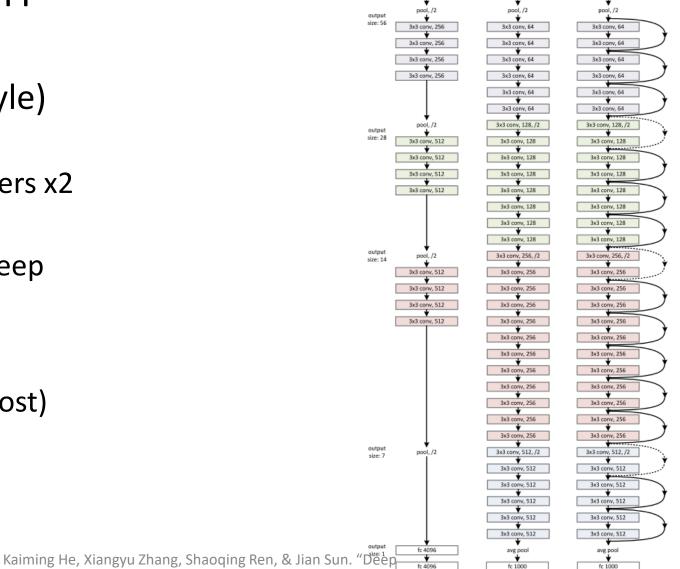
- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations



-> Appropriate for treating perturbation as keeping a base information

Network Design

- Basic design (VGG-style)
 - All 3x3 conv (almost)
 - Spatial size/2 => #filters x2
 - Batch normalization
 - Simple design, just deep
- Other remarks
 - No max pooling (almost)
 - No hidden fc
 - No dropout



fc 1000

VGG-19

image

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128 3x3 conv, 128

output

output

size: 112

size: 224

34-layer plain

7x7 conv, 64, /2

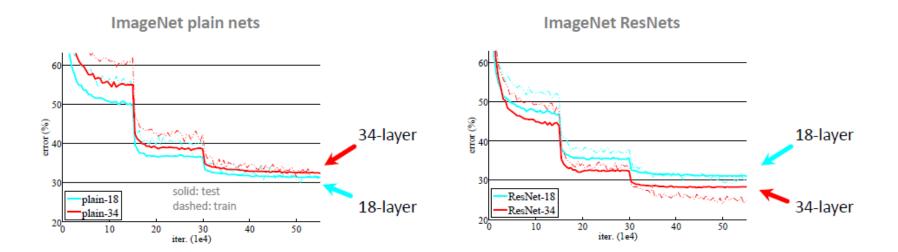
34-layer residual

7x7 conv, 64, /2

Residual Learning for Image Recognition". arXiv 2015.

Results

- Deep Resnets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error



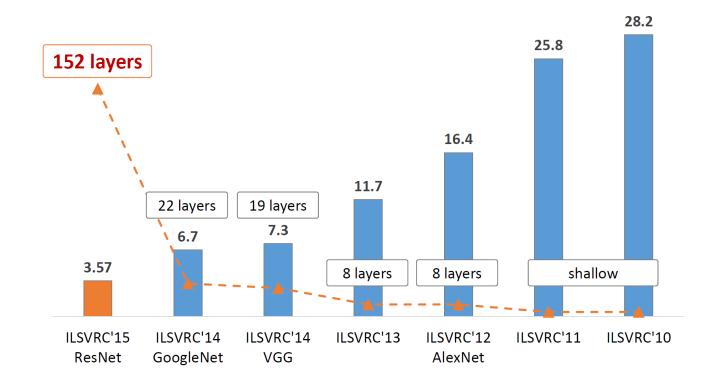
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Results

- 1st places in all five main tracks in "ILSVRC & COCO 2015 Competitions"
 - ImageNet Classification
 - ImageNet Detection
 - ImageNet Localization
 - COCO Detection
 - COCO Segmentation

Quantitative Results

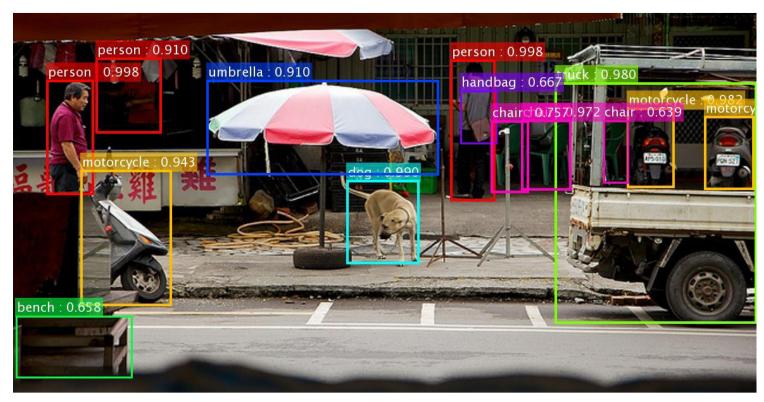
ImageNet Classification



Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Qualitative Result

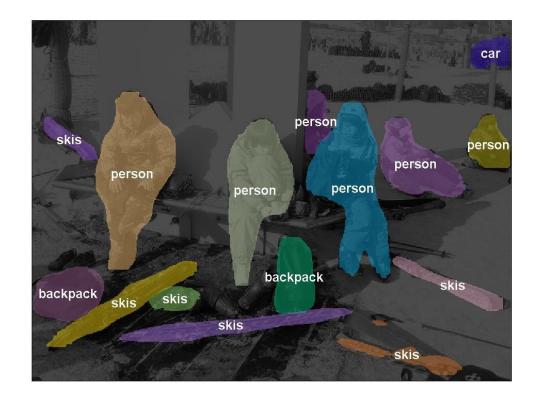
- Object detection
 - Faster R-CNN + ResNet



Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015. Jifeng Dai, Kaiming He, & Jian Sun. "Instance-aware Semantic Segmentation via Multi-task Network Cascades". arXiv 2015.

Qualitative Results

• Instance Segmentation



Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.