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Goals for the lecture

you should understand the following concepts

• PAC learnability

• consistent learners and version spaces

• sample complexity

• PAC learnability in the agnostic setting

• the VC dimension

• sample complexity using the VC dimension





PAC learning

• Overfitting happens because training error is a poor 

estimate of generalization error

→ Can we infer something about generalization error 

from training error?

• Overfitting happens when the learner doesn’t see 

enough training instances

→ Can we estimate how many instances are enough?



Learning setting #1 

instance space 𝒳
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• set of instances 𝒳

• set of hypotheses (models) H

• set of possible target concepts C

• unknown probability distribution 𝒟 over instances 

Cc



Learning setting #1 

• learner is given a set D of training instances 〈 x, c(x) 〉
for some target concept c in C

• each instance x is drawn from distribution 𝒟

• class label c(x) is provided for each x

• learner outputs hypothesis h modeling c



True error of a hypothesis

c h

instance space 𝒳
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the true error of hypothesis h refers to how often h is wrong on future 

instances drawn from 𝒟



Training error of a hypothesis

the training error of hypothesis h refers to how often h is wrong on 

instances in the training set D

Can we bound error𝒟(h) in terms of errorD(h) ?
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Is approximately correct 

good enough?

To say that our learner L has learned a concept, should we 

require error𝒟(h) = 0 ?

this is not realistic:

• unless we’ve seen every possible instance, there may be multiple 

hypotheses that are consistent with the training set

• there is some chance our training sample will be unrepresentative



Probably approximately 

correct learning?

Instead, we’ll require that

• the error of a learned hypothesis h is bounded by some constant ε

• the probability of the learner failing to learn an accurate hypothesis 

is bounded by a constant δ



Probably Approximately Correct (PAC) 

learning [Valiant, CACM 1984]

• Consider a class C of possible target concepts defined over a set of 

instances 𝒳 of length n, and a learner L using hypothesis space H

• C is PAC learnable by L using H if, for all

c∈ C

distributions 𝒟 over 𝒳

ε such that 0 < ε < 0.5

δ such that 0 < δ < 0.5

• learner L will, with probability at least (1-δ), output a hypothesis h ∈ H

such that error𝒟(h) ≤ ε in time that is polynomial in

1/ε

1/δ

n

size(c)



PAC learning and 

consistency

• Suppose we can find hypotheses that are consistent with 

m training instances.  

• We can analyze PAC learnability by determining whether

1. m grows polynomially in the relevant parameters

2. the processing time per training example is 

polynomial



Version spaces

• A hypothesis h is consistent with a set of training examples D of 

target concept if and only if h(x) = c(x) for each training example  

〈 x, c(x) 〉 in D

• The version space VSH,D with respect to hypothesis space H

and training set D, is the subset of hypotheses from H

consistent with all training examples in D
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Exhausting the 

version space

• The version space VSH,D is ε-exhausted with respect to c

and D if every hypothesis h ∈ VSH,D has true error < ε



Exhausting the version space

• Suppose that every h in our version space VSH,D is consistent 

with m training examples

• The probability that VSH,D is not ε-exhausted (i.e. that it 

contains some hypotheses that are not accurate enough)

£ H e-em

k(1- e )m there might be k such hypotheses

H (1- e )m k is bounded by |H|

 (1- e ) £ e-e  when 0 £ e £1£ H e-em

(1- e )m probability that some hypothesis with error > ε

is consistent with m training instances
Proof:



Sample complexity for finite 

hypothesis spaces
[Blumer et al., Information Processing Letters 1987]

• we want to reduce this probability below δ

H e-em £d

m ³
1

e
ln H + ln
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• solving for m we get

log dependence on H ε has stronger influence than δ



PAC analysis example: 

learning conjunctions of Boolean literals

• each instance has n Boolean features

• learned hypotheses are of the form

How many training examples suffice to ensure that with prob ≥ 0.99, 

a consistent learner will return a hypothesis with error ≤ 0.05 ?

there are 3n hypotheses (each variable can be present and unnegated, 

present and negated, or absent) in H

m ³
1

.05
ln 3n( ) + ln

1
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for n=10, m ≥ 312               for n=100, m ≥ 2290
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PAC analysis example: 

learning conjunctions of Boolean literals

• we’ve shown that the sample complexity is polynomial in relevant 

parameters: 1/ε,  1/δ, n

• to prove that Boolean conjunctions are PAC learnable, need to 

also show that we can find a consistent hypothesis in polynomial 

time (the FIND-S algorithm in Mitchell, Chapter 2 does this)

FIND-S:

initialize h to the most specific hypothesis   x1 ∧ ¬x1 ∧ x2∧¬x2 … xn∧ ¬xn

for each positive training instance x

remove from h any literal that is not satisfied by x

output hypothesis h



PAC analysis example: 

learning decision trees of depth 2

• each instance has n Boolean features

• learned hypotheses are DTs of depth 2 

using only 2 variables

H  =  
n

2
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PAC analysis example: 

learning decision trees of depth 2

• each instance has n Boolean features

• learned hypotheses are DTs of depth 2 

using only 2 variables

How many training examples suffice to ensure that with prob ≥ 0.99, 

a consistent learner will return a hypothesis with error ≤ 0.05 ?

m ³
1

.05
ln 8n2 - 8n( ) + ln

1

.01
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for n=10, m ≥ 224               for n=100, m ≥ 318
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PAC analysis example: 

K-term DNF is not PAC learnable

• each instance has n Boolean features

• learned hypotheses are of the form                                  where 

each Ti is a conjunction of n Boolean features or their negations

|H| ≤ 3nk , so sample complexity is polynomial in the relevant parameters

m ³
1

e
nk ln(3)+ ln

1
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however, the computational complexity (time to find consistent h) is not 

polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be 

reduced to learning 3-term DNF)
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What if the target concept is not in 

our hypothesis space?

• so far, we’ve been assuming that the target concept c is in our 

hypothesis space; this is not a very realistic assumption

• agnostic learning setting

• don’t assume c ∈ H

• learner returns hypothesis h that makes fewest errors on 

training data



Hoeffding bound

• we can approach the agnostic setting by using the Hoeffding bound

• let 𝑍1…𝑍𝑚 be a sequence of 𝑚 independent Bernoulli trials (e.g. coin 

flips), each with probability of success 𝐸 𝑍𝑖 = 𝑝

• let 𝑆 = 𝑍1 +⋯+ 𝑍𝑚

𝑃 𝑆 > 𝑝 + 휀 𝑚 ≤ 𝑒−2𝑚𝜀2



Agnostic PAC learning

• applying the Hoeffding bound to characterize the error rate of a given 

hypothesis

𝑃 𝑒𝑟𝑟𝑜𝑟𝒟 ℎ > 𝑒𝑟𝑟𝑜𝑟D ℎ + 휀 ≤ 𝑒−2𝑚𝜀2

• but our learner searches hypothesis space to find ℎ𝑏𝑒𝑠𝑡

𝑃 𝑒𝑟𝑟𝑜𝑟𝒟 ℎ𝑏𝑒𝑠𝑡 > 𝑒𝑟𝑟𝑜𝑟D ℎ𝑏𝑒𝑠𝑡 + 휀 ≤ 𝐻 𝑒−2𝑚𝜀2

• solving for the sample complexity when this probability is limited to 𝛿

𝑚 ≥
1

2휀2
𝑙𝑛 𝐻 + 𝑙𝑛

1

𝛿



What if the hypothesis space 

is not finite?

• Q: If H is infinite (e.g. the class of perceptrons), what measure of 

hypothesis-space complexity can we use in place of |H| ?

• A: the largest subset of 𝒳 for which H can guarantee zero training 

error, regardless of the target function.

this is known as the Vapnik-Chervonenkis dimension (VC-dimension)



• a set of instances D is shattered by a hypothesis space H iff for 

every dichotomy of D there is a hypothesis in H consistent with 

this dichotomy

• the VC dimension of H is the size of the largest set of instances 

that is shattered by H

Shattering and the VC dimension



An infinite hypothesis space with a 

finite VC dimension

consider: H is set of lines in 2D (i.e. perceptrons in 2D feature space)

1

can find an h consistent with 1 

instance no matter how it’s labeled

1

can find an h consistent with 2 

instances no matter labeling

2



An infinite hypothesis space with a 

finite VC dimension

consider: H is set of lines in 2D

1

can find an h consistent with 3 

instances no matter labeling 
(assuming they’re not colinear)

2

3

+

cannot find an h consistent with 4 

instances for some labelings

-

-

+

can shatter 3 instances, but not 4, so the VC-dim(H) = 3

more generally, the VC-dim of hyperplanes in n dimensions = n+1



VC dimension for finite hypothesis spaces

for finite H, VC-dim(H) ≤ log2|H|

Proof:

suppose VC-dim(H) = d

for d instances, 2d different labelings possible

therefore H must be able to represent 2d hypotheses

2d ≤ |H|

d = VC-dim(H) ≤ log2|H|



Sample complexity and the VC dimension

• using VC-dim(H) as a measure of complexity of H, we can derive 

the following bound [Blumer et al., JACM 1989]
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4 log2
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can be used for both finite and infinite hypothesis spaces

m grows log × linear in ε (better than earlier bound)



Lower bound on sample complexity
[Ehrenfeucht et al., Information & Computation 1989]

• there exists a distribution 𝒟 and target concept in C such that if the 

number of training instances given to L

m < max
1

e
log

1

d
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then with probability at least δ, L outputs h such that errorD(h) > ε



Comments on PAC learning

• PAC analysis formalizes the learning task and allows for non-

perfect learning (indicated by ε and δ)

• finding a consistent hypothesis is sometimes easier for larger 

concept classes

• e.g. although k-term DNF is not PAC learnable, the more 

general class k-CNF is

• PAC analysis has been extended to explore a wide range of cases

• noisy training data

• learner allowed to ask queries

• restricted distributions (e.g. uniform) over 𝒟

• etc.

• most analyses are worst case

• sample complexity bounds are generally not tight


