
Learning Theory Part 2:

Mistake Bound Model

Yingyu Liang

Computer Sciences 760

Fall 2017

http://pages.cs.wisc.edu/~yliang/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed

by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad

Hazan, Tom Dietterich, and Pedro Domingos.

Goals for the lecture

you should understand the following concepts

• the on-line learning setting

• the mistake bound model of learnability

• the Halving algorithm

• the Weighted Majority algorithm

Now let’s consider learning in the on-line learning setting:

Learning setting #2: on-line learning

for t = 1 …

learner receives instance x(t)

learner predicts h(x(t))

learner receives label c((t)) and updates model h

The mistake bound model of learning

How many mistakes will an on-line learner

make in its predictions before it learns the

target concept?

the mistake bound model of learning

addresses this question

consider the learning task

• training instances are represented by n Boolean features

• target concept is conjunction of up to n Boolean (negated) literals

Mistake bound example:

learning conjunctions with FIND-S

FIND-S:

initialize h to the most specific hypothesis x1 ∧ ¬x1 ∧x2∧¬x2 … xn∧ ¬xn

for each positive training instance x

remove from h any literal that is not satisfied by x

output hypothesis h

Example: using FIND-S to learn conjunctions

• suppose we’re learning a concept representing the sports

someone likes

• instances are represented using Boolean features that characterize

the sport

Snow (is it done on snow?)

Water

Road

Mountain

Skis

Board

Ball (does it involve a ball?)

Example: using FIND-S to learn conjunctions

h(x) = false c(x) = true

h: snow ∧ ¬water ∧ ¬road ∧ mountain ∧ skis ∧ ¬board ∧¬ball

x: snow, ¬water, ¬road, mountain, skis, ¬board, ¬ballt = 1

t = 0 snow ∧ ¬snow ∧ water ∧¬water ∧ road ∧ ¬road ∧

mountain ∧ ¬mountain ∧ skis ∧ ¬skis ∧ board

∧¬board ∧ ball ∧¬ball

h:

x: snow, ¬water, ¬road, ¬mountain, skis, ¬board, ¬ballt = 2

h(x) = false c(x) = false

h: snow ∧ ¬water ∧ ¬road ∧ mountain ∧ ¬ball

x: snow, ¬water, ¬road, mountain, ¬skis, board, ¬ballt = 3

h(x) = false c(x) = true

Mistake bound example:

learning conjunctions with FIND-S

the maximum # of mistakes FIND-S will make = n + 1

Proof:

• FIND-S will never mistakenly classify a negative (h is always at least

as specific as the target concept)

• initial h has 2n literals

• the first mistake on a positive instance will reduce the initial

hypothesis to n literals

• each successive mistake will remove at least one literal from h

Halving algorithm

// initialize the version space to contain all h ∈ H

VS0 ← H

for t ← 1 to T do

given training instance x(t)

// make prediction for x

h’(x(t)) = MajorityVote(VSt, x
(t))

given label c(x(t))

// eliminate all wrong h from version space (reduce the

size of the VS by at least half on mistakes)

VSt+1 ← {h ∈ VSt : h(x(t)) = c(x(t)) }

return VSt+1

Mistake bound for the Halving algorithm

the maximum # of mistakes the Halving algorithm will make

Proof:

• initial version space contains |H| hypotheses

• each mistake reduces version space by at least half

⎣a⎦ is the largest integer

not greater than a

 ||log2 H

Optimal mistake bound
[Littlestone, Machine Learning 1987]

VC(C) £ Mopt (C) £ MHalving(C) £ log2 C()

mistakes by best algorithm

(for hardest c ∈ C, and

hardest training sequence)

mistakes by Halving algorithm

let C be an arbitrary concept class

The Weighted Majority algorithm
given: a set of predictors A = {a1 … an}, learning rate 0 ≤ β < 1

for all i initialize wi ← 1

for t ← 1 to T do

given training instance x(t)

// make prediction for x

initialize q0 and q1 to 0

for each predictor ai

if ai(x
(t)) = 0 then q0 ←q0 + wi

if ai(x
(t)) = 1 then q1 ←q1 + wi

if q1 > q0 then h(x(t)) = 1

else if q0 > q1 then h(x(t)) ← 0

else if q0 = q1 then h(x(t)) ← 0 or 1 randomly chosen

given label c(x(t))

// update hypothesis

for each predictor ai do

if ai(x
(t)) ≠ c(x(t)) then wi ← β wi

The Weighted Majority algorithm

• predictors can be individual features or hypotheses or learning

algorithms

• if the predictors are all h ∈ H, then WM is like a weighted voting

version of the Halving algorithm

• WM learns a linear separator, like a perceptron

• weight updates are multiplicative instead of additive (as in

perceptron/neural net training)

• multiplicative is better when there are many features

(predictors) but few are relevant

• additive is better when many features are relevant

• approach can handle noisy training data

Relative mistake bound for

Weighted Majority

Let

• D be any sequence of training instances

• A be any set of n predictors

• k be minimum number of mistakes made by best predictor in A

for training sequence D

• the number of mistakes over D made by Weighted Majority using β

=1/2 is at most

2.4(k + log2 n)

Comments on mistake bound learning

• we’ve considered mistake bounds for learning the target concept

exactly

• there are also analyses that consider the number of mistakes until a

concept is PAC learned

• some of the algorithms developed in this line of research have had

practical impact (e.g. Weighted Majority, Winnow)

[Blum, Machine Learning 1997]

