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Goals for the lecture

you should understand the following concepts

• the Bayesian network representation

• inference by enumeration

• the parameter learning task for Bayes nets

• the structure learning task for Bayes nets

• maximum likelihood estimation

• Laplace estimates

• m-estimates



Bayesian network example

• Consider the following 5 binary random variables:

B = a burglary occurs at your house

E = an earthquake occurs at your house

A = the alarm goes off

J = John calls to report the alarm

M = Mary calls to report the alarm

• Suppose we want to answer queries like what is       

P(B | M, J) ?  



Bayesian network example
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Bayesian networks

• a BN consists of a Directed Acyclic Graph (DAG) and 
a set of conditional probability distributions

• in the DAG

– each node denotes random a variable

– each edge from X to Y represents that X directly 
influences Y

– formally: each variable X is independent of its non-
descendants given its parents

• each node X has a conditional probability distribution 
(CPD) representing P(X | Parents(X) )



Bayesian networks

• a BN provides a compact representation of a joint 
probability distribution

• using the chain rule, a joint probability distribution can be 
expressed as
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Bayesian networks

• a standard representation of the joint distribution  for the 
Alarm example has 25 = 32 parameters

• the BN representation of this distribution has 20 parameters
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Bayesian networks

• consider a case with 10 binary random variables

• How many parameters does a BN with the following 
graph structure have?

• How many parameters does the standard table 
representation of the joint distribution have?
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Advantages of the Bayesian 

network representation

• Captures independence and conditional independence 

where they exist

• Encodes the relevant portion of the full joint among 

variables where dependencies exist

• Uses a graphical representation which lends insight into 

the complexity of inference



The inference task in Bayesian networks

Given: values for some variables in the network (evidence),
and a set of query variables

Do:  compute the posterior distribution over the query 
variables

• variables that are neither evidence variables nor query 
variables are hidden variables

• the BN representation is flexible enough that any set can 
be the evidence variables and any set can be the query 
variables



Inference by enumeration

A

B E

MJ

• let a denote A=true, and ¬a denote A=false

• suppose we’re given the query: P(b | j, m)

“probability the house is being burglarized given that John 

and Mary both called”

• from the graph structure we can first compute:

sum over possible

values for E and A

variables (e, ¬e, a, ¬a)
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Inference by enumeration
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• now do equivalent calculation for P(¬b,  j, m)

• and determine P(b | j, m)

Inference by enumeration
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Comments on BN inference

• inference by enumeration is an exact method (i.e. it computes the 

exact answer to a given query)

• it requires summing over a joint distribution whose size is exponential 

in the number of variables

• in many cases we can do exact inference efficiently in large networks

– key insight: save computation by pushing sums inward

• in general, the Bayes net inference problem is NP-hard

• there are also methods for approximate inference – these get an 
answer which is “close”

• in general, the approximate inference problem is NP-hard also, but 
approximate methods work well for many real-world problems



The parameter learning task

• Given: a set of training instances, the graph structure of a BN

• Do: infer the parameters of the CPDs
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The structure learning task

• Given: a set of training instances

• Do: infer the graph structure (and perhaps the 
parameters of the CPDs too)
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Parameter learning and maximum 

likelihood estimation

• maximum likelihood estimation (MLE)

– given a model structure (e.g. a Bayes net graph) G
and a set of data D

– set the model parameters θ to maximize P(D | G, θ)

• i.e. make the data D look as likely as possible under 
the model P(D | G, θ)



Maximum likelihood estimation

x = 1,1,1,0,1,0,0,1,0,1{ }

consider trying to estimate the parameter θ (probability of heads) of 

a biased coin from a sequence of flips

for h heads in n flips

the MLE is h/n

the likelihood function for θ is given by:



MLE in a Bayes net

independent parameter learning

problem for each CPD
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Maximum likelihood estimation
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now consider estimating the CPD parameters for B and J in the alarm

network given the following data set
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Maximum likelihood estimation
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suppose instead, our data set was this…

do we really want to 

set this to 0?
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Maximum a posteriori (MAP) estimation

• instead of estimating parameters strictly from the 
data, we could start with some prior belief for each

• for example, we could use Laplace estimates

• where nv represents the number of occurrences of 
value v

pseudocounts
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Maximum a posteriori estimation

a more general form: m-estimates

P(X = x) =
nx + pxm

nv
vÎ Values(X )
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÷ +m number of  “virtual” instances

prior probability of value x



M-estimates example
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now let’s estimate parameters for B using m=4 and pb=0.25
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