Bayesian Networks Part 3

Yingyu Liang Computer Sciences 760 Fall 2017

http://pages.cs.wisc.edu/~yliang/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, Tom Dietterich, and Pedro Domingos.

Goals for the lecture

you should understand the following concepts

- structure learning as search
- Kullback-Leibler divergence
- the Sparse Candidate algorithm
- the Tree Augmented Network (TAN) algorithm

Heuristic search for structure learning

- each state in the search space represents a DAG Bayes net structure
- to instantiate a search approach, we need to specify
 - scoring function
 - state transition operators
 - search algorithm

Scoring function decomposability

 when the appropriate priors are used, and all instances in D are complete, the scoring function can be decomposed as follows

$$score(G, D) = \sum_{i} score(X_{i}, Parents(X_{i}) : D)$$

- thus we can
 - score a network by summing terms over the nodes in the network
 - efficiently score changes in a *local* search procedure

Scoring functions for structure learning

 Can we find a good structure just by trying to maximize the likelihood of the data?

$$\operatorname{arg\,max}_{G,\theta_G} \log P(D \mid G,\theta_G)$$

- If we have a strong restriction on the the structures allowed (e.g. a tree), then maybe.
- Otherwise, no! Adding an edge will never decrease likelihood. Overfitting likely.

Scoring functions for structure learning

- there are many different scoring functions for BN structure search
- one general approach

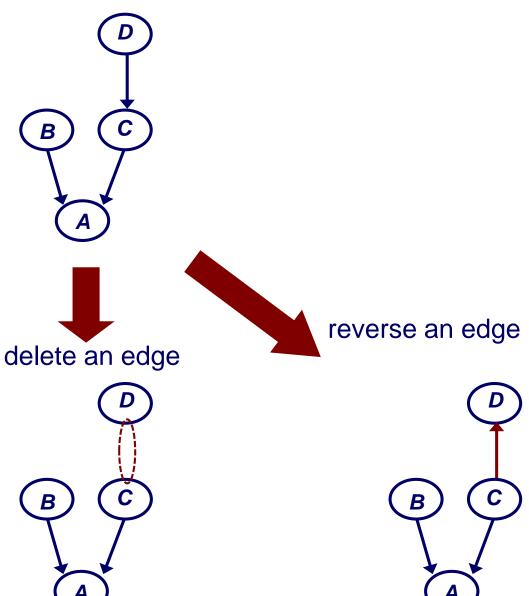
$$\arg\max_{G,\theta_G}\log P(D\,|\,G,\theta_G)-f(m)\,|\,\theta_G\,|$$
 complexity penalty

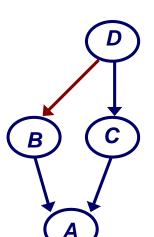
Akaike Information Criterion (AIC):
$$f(m) = 1$$

Bayesian Information Criterion (BIC):
$$f(m) = \frac{1}{2}\log(m)$$

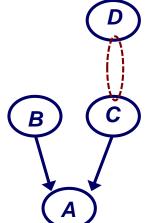
Structure search operators

given the current network at some stage of the search, we can...





add an edge



Bayesian network search: hill-climbing

given: data set D, initial network B_{θ}

```
i = 0
\mathbf{B}_{best} \leftarrow B_0
while stopping criteria not met
    for each possible operator application a
            B_{new} \leftarrow \mathsf{apply}(a, B_i)
            if score(B_{new}) > score(B_{best})
                         B_{hest} \leftarrow B_{new}
     ++i
    B_i \leftarrow B_{best}
return B_i
```

Bayesian network search: the Sparse Candidate algorithm

[Friedman et al., UAI 1999]

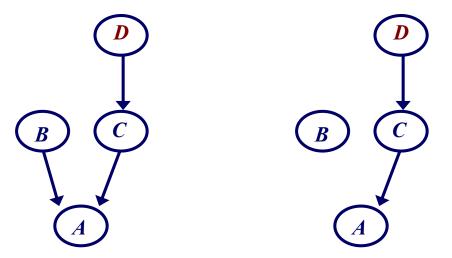
```
given: data set D, initial network B_0, parameter k
i = 0
repeat
   ++i
   // restrict step
   select for each variable X_i a set C_i^i of candidate parents (|C_i^i| \le k)
   // maximize step
   find network B_i maximizing score among networks where
                                                                              \forall X_i,
   Parents(X_i) \subseteq C_i^i
} until convergence
return B_i
```

 to identify candidate parents in the <u>first</u> iteration, can compute the <u>mutual information</u> between pairs of variables

$$I(X,Y) = \sum_{x \in \text{values}(X)} \sum_{y \in \text{values}(Y)} P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)}$$

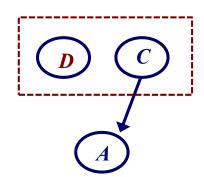
Suppose:

true distribution



we're selecting two candidate parents for A, and I(A, C) > I(A, D) > I(A, B)

 with mutual information, the candidate parents for A would be C and D



how could we get B as a candidate parent?

 Kullback-Leibler (KL) divergence provides a distance measure between two distributions, P and Q

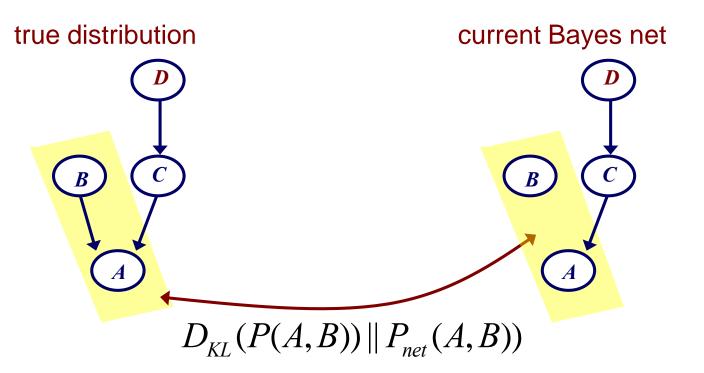
$$D_{KL}(P(X) || Q(X)) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

mutual information can be thought of as the KL divergence between the distributions

P(X)P(Y) (assumes X and Y are independent)

• we can use KL to assess the discrepancy between the network's $P_{net}(X, Y)$ and the empirical P(X, Y)

$$M(X,Y) = D_{KL}(P(X,Y)) || P_{net}(X,Y)$$



• can estimate $P_{net}(X, Y)$ by sampling from the network (i.e. using it to generate instances)

```
given: data set D, current network B_i, parameter k
for each variable X_i
   calculate M(X_i, X_l) for all X_i \neq X_l such that X_l \notin Parents(X_i)
   choose highest ranking X_1 \dots X_{k-s} where s=| Parents(X_i)
   // include current parents in candidate set to ensure monotonic
   // improvement in scoring function
   C_i^i = \mathsf{Parents}(X_i) \cup X_1 \dots X_{k-s}
return { C_i^i } for all X_i
```

The maximize step in Sparse Candidate

- hill-climbing search with add-edge, delete-edge, reverse-edge operators
- test to ensure that cycles aren't introduced into the graph

Efficiency of Sparse Candidate

n = number of variables

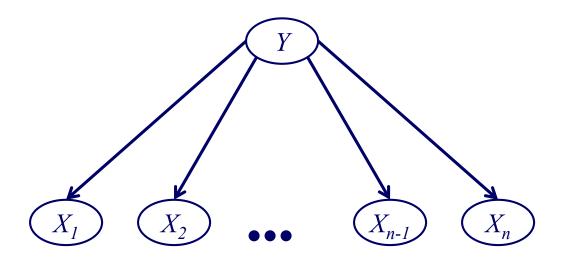
	possible parent sets for each node	changes scored on first iteration of search	changes scored on subsequent iterations
ordinary greedy search	$O(2^n)$	$O(n^2)$	O(n)
greedy search w/at most k parents	$O\left(\binom{n}{k}\right)$	$O(n^2)$	O(n)
Sparse Candidate	$O(2^k)$	O(kn)	O(k)

Bayes nets for classification

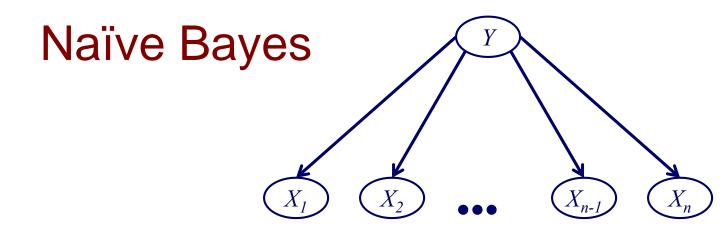
- the learning methods for BNs we've discussed so far can be thought of as being unsupervised
 - the learned models are not constructed to predict the value of a special class variable
 - instead, they can predict values for arbitrarily selected query variables
- now let's consider BN learning for a standard supervised task (learn a model to predict Y given X₁ ... X_n)

Naïve Bayes

- one very simple BN approach for supervised tasks is naïve Bayes
- in naïve Bayes, we assume that all features X_i are conditionally independent given the class Y



$$P(X_1,...,X_n,Y) = P(Y) \prod_{i=1}^n P(X_i | Y)$$



Learning

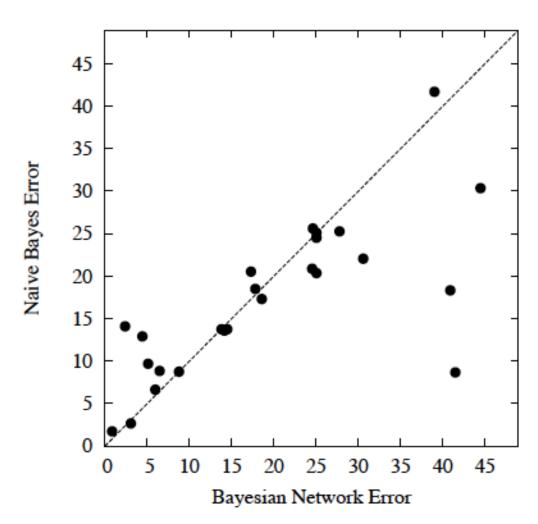
- estimate P(Y = y) for each value of the class variable Y
- estimate $P(X_i = x \mid Y = y)$ for each X_i

Classification: use Bayes' Rule

$$P(Y = y \mid x) = \frac{P(y)P(x \mid y)}{\sum_{y'} P(y')P(x \mid y')} = \frac{P(y)\prod_{i=1}^{n} P(x_i \mid y)}{\sum_{y'} \left(P(y')\prod_{i=1}^{n} P(x_i \mid y')\right)}$$

Naïve Bayes vs. BNs learned with an unsupervised structure search

test-set error on 25 classification data sets from the UC-Irvine Repository



The Tree Augmented Network (TAN) algorithm

[Friedman et al., Machine Learning 1997]

- learns a <u>tree structure</u> to augment the edges of a naïve Bayes network
- algorithm
 - 1. compute weight $I(X_i, X_j | Y)$ for each possible edge (X_i, X_j) between <u>features</u>
 - 2. find maximum weight spanning tree (MST) for graph over $X_1 \dots X_n$
 - 3. assign edge directions in MST
 - 4. construct a TAN model by adding node for Y and an edge from Y to each X_i

Conditional mutual information in the TAN algorithm

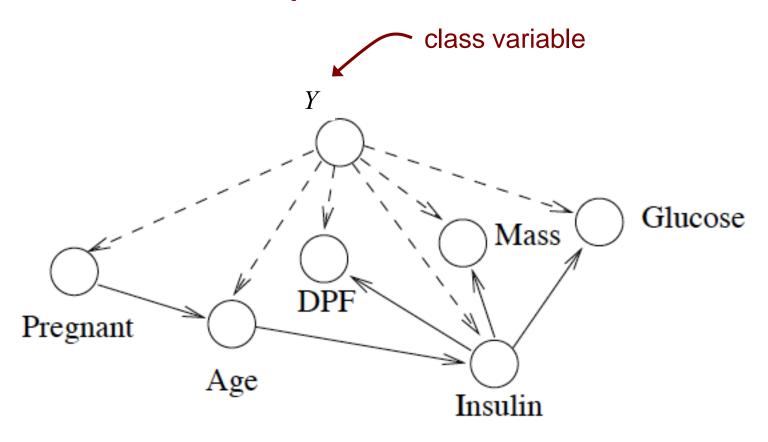
conditional mutual information is used to calculate edge weights

$$I(X_i, X_j | Y) =$$

$$\sum_{x_i \in \text{values}(X_i)} \sum_{x_j \in \text{values}(X_j)} \sum_{y \in \text{values}(Y)} P(x_i, x_j, y) \log_2 \frac{P(x_i, x_j \mid y)}{P(x_i \mid y) P(x_j \mid y)}$$

"how much information X_i provides about X_j when the value of Y is known"

Example TAN network



naïve Bayes edges ---->
edges determined by MST ---->

TAN vs. Chow-Liu

- TAN is focused on learning a Bayes net specifically for classification problems
- the MST includes only the feature variables (the class variable is used only for calculating edge weights)
- conditional mutual information is used instead of mutual information in determining edge weights in the undirected graph
- the directed graph determined from the MST is added to the $Y \rightarrow X_i$ edges that are in a naïve Bayes network

TAN vs. Naïve Bayes

test-set error on 25 data sets from the UC-Irvine Repository

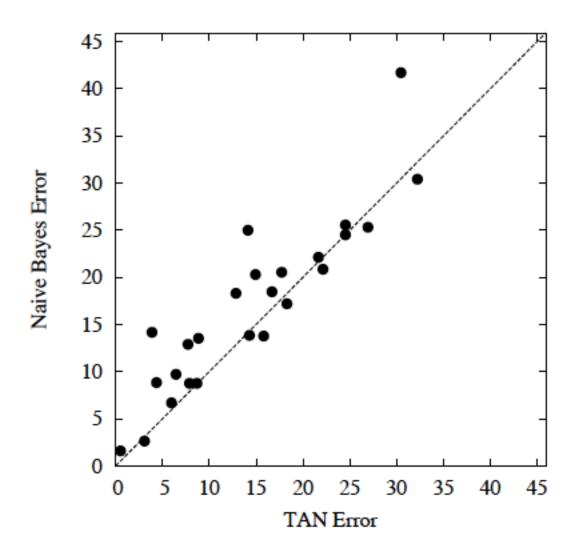


Figure from Friedman et al., Machine Learning 1997

Comments on Bayesian networks

- the BN representation has many advantages
 - easy to encode domain knowledge (direct dependencies, causality)
 - can represent uncertainty
 - principled methods for dealing with missing values
 - can answer arbitrary queries (in theory; in practice may be intractable)
- for supervised tasks, it may be advantageous to use a learning approach (e.g. TAN) that focuses on the dependencies that are most important
- although very simplistic, naïve Bayes often learns highly accurate models
- BNs are one instance of a more general class of probabilistic graphical models