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Goals for the lecture

you should understand the following concepts

• logistic regression

• the relationship between logistic regression and naïve Bayes

• the relationship between discriminative and generative learning

• when discriminative/generative is likely to learn more accurate 

models



What is logistic regression?
Y

X1 X2 Xn-1 Xn

• the same as a single layer neural net with a sigmoid in which the 

weights are trained to minimize

• the name is a misnomer since LR is used for classification

𝐸 𝒘 = −

𝑑∈𝐷

ln 𝑃 𝑦 𝑑 |𝒙 𝑑

= 

𝑑∈𝐷

−𝑦 𝑑 ln 𝑜(𝑑) − 1 − 𝑦 𝑑 ln 1 − 𝑜(𝑑)



Naïve Bayes and logistic regression

XnXn-1X2X1

Y

Y

X1 X2 Xn-1 Xn

naïve Bayes logistic regression

What’s the difference?

• direction of the arrows?

• whether feature/variable names are inside the ovals or outside?

• sigmoid function?

• something else?



Naïve Bayes revisited

consider naïve Bayes for a binary classification task

expanding denominator

dividing everything by numerator
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Naïve Bayes revisited

applying exp(ln(a)) = a

applying ln(a/b) = -ln(b/a)
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Naïve Bayes revisited

converting log of products to sum of logs

Does this look familiar?
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Naïve Bayes vs. logistic regression

naïve Bayes

logistic regression



Naïve Bayes as a neural net
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weights correspond to log ratios 



Naïve Bayes vs. logistic regression

• they have the same functional form, and thus have the same 

hypothesis space bias (recall our discussion of inductive bias)

• Do they learn the same models?

In general, no.  They use different methods to estimate

the model parameters.

Naïve Bayes is a generative approach, whereas LR is

a discriminative one.



Generative vs. discriminative learning

generative approach

learning: estimate P(Y) and P(X1, …, Xn | Y)

classification: use Bayes’ Rule to compute P(Y | X1, …, Xn )

discriminative approach

learn P(Y | X1, …, Xn ) directly



Naïve Bayes vs. logistic regression

asymptotic comparison (# training instances → ∞)

• when conditional independence assumptions made by NB are 

correct, NB and LR produce identical classifiers

when conditional independence assumptions are incorrect

• logistic regression is less biased; learned weights may be able 

to compensate for incorrect assumptions (e.g. what if we have 

two redundant but relevant features)

• therefore LR expected to outperform NB when given lots of 

training data



Naïve Bayes vs. logistic regression

non-asymptotic analysis [Ng & Jordan, NIPS 2001]

• consider convergence of parameter estimates; how many 

training instances are needed to get good estimates

naïve Bayes:  O(log n)

logistic regression: O(n)

• naïve Bayes converges more quickly to its (perhaps less 

accurate) asymptotic estimates

• therefore NB expected to outperform LR with small training sets

n = # features



Experimental comparison of NB and LR

naïve Bayes

logistic regression

size of training set

Ng and Jordan compared learning curves for the two approaches on 15 

data sets (some w/discrete features, some w/continuous features)



Experimental comparison of NB and LR

naïve Bayes

logistic regression

general trend supports theory

• NB has lower predictive error when training sets are small

• the error of LR approaches or is lower than NB when training sets 

are large 



Discussion

• NB/LR is one case of a pair of generative/discriminative 

approaches for the same model class

• if modeling assumptions are valid (e.g. conditional independence of 

features in NB)  the two will produce identical classifiers in the limit 

(# training instances → ∞)

• if modeling assumptions are not valid, the discriminative approach 

is likely to be more accurate for large training sets

• for small training sets, the generative approach is likely to be more 

accurate because parameters converge to their asymptotic values 

more quickly (in terms of training set size)

• Q: How can we tell whether our training set size is more appropriate 

for a generative or discriminative method?  A: Empirically compare 

the two.


