Support Vector Machines Part 1

Yingyu Liang Computer Sciences 760 Fall 2017

http://pages.cs.wisc.edu/~yliang/cs760/

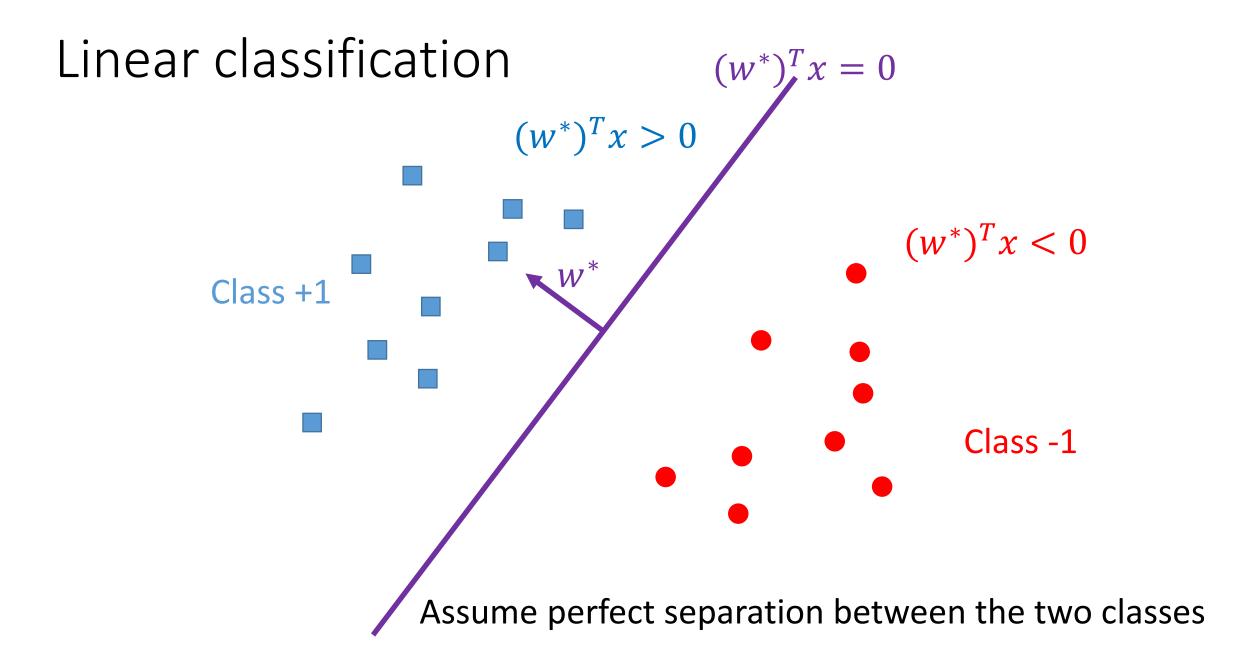
Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, Tom Dietterich, and Pedro Domingos.

Goals for the lecture

you should understand the following concepts

- the margin
- the linear support vector machine
- the primal and dual formulations of SVM learning
- support vectors
- VC-dimension and maximizing the margin

Motivation

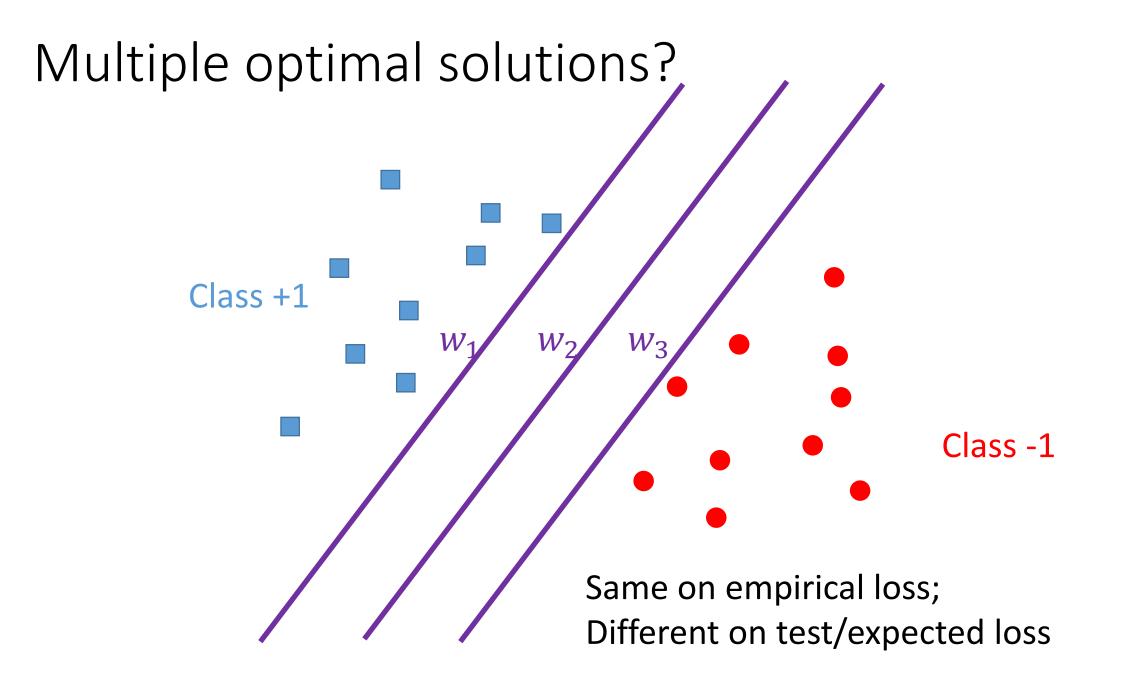


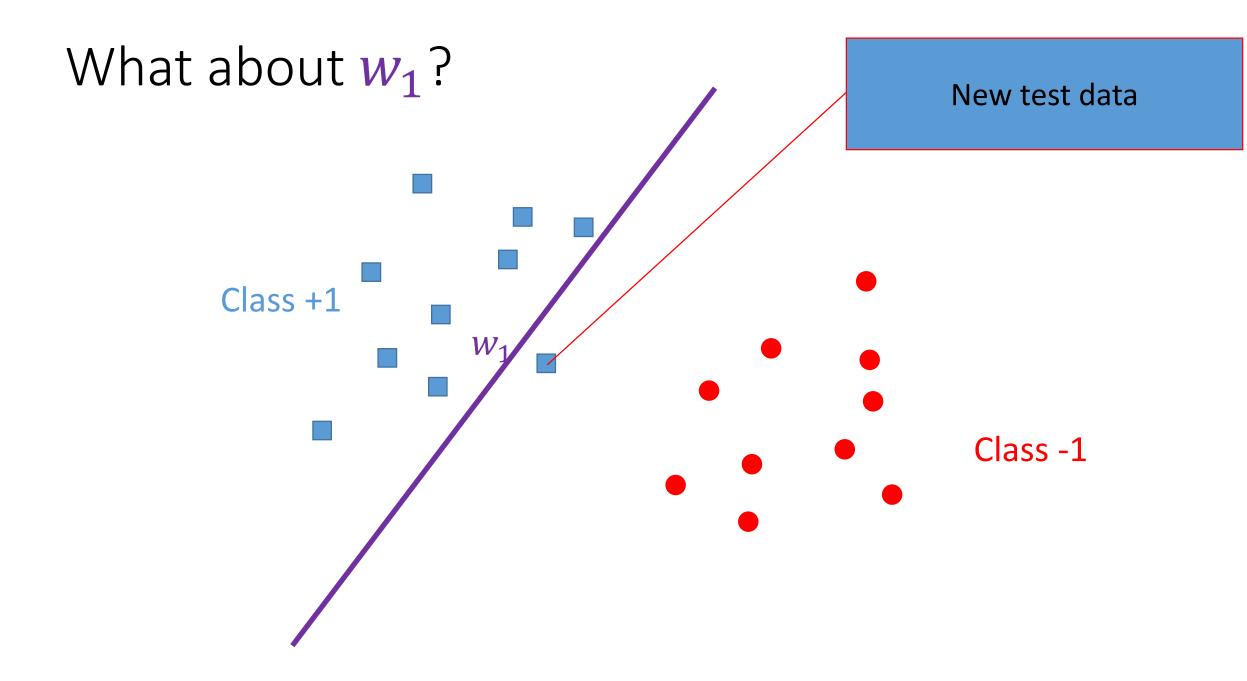
Attempt

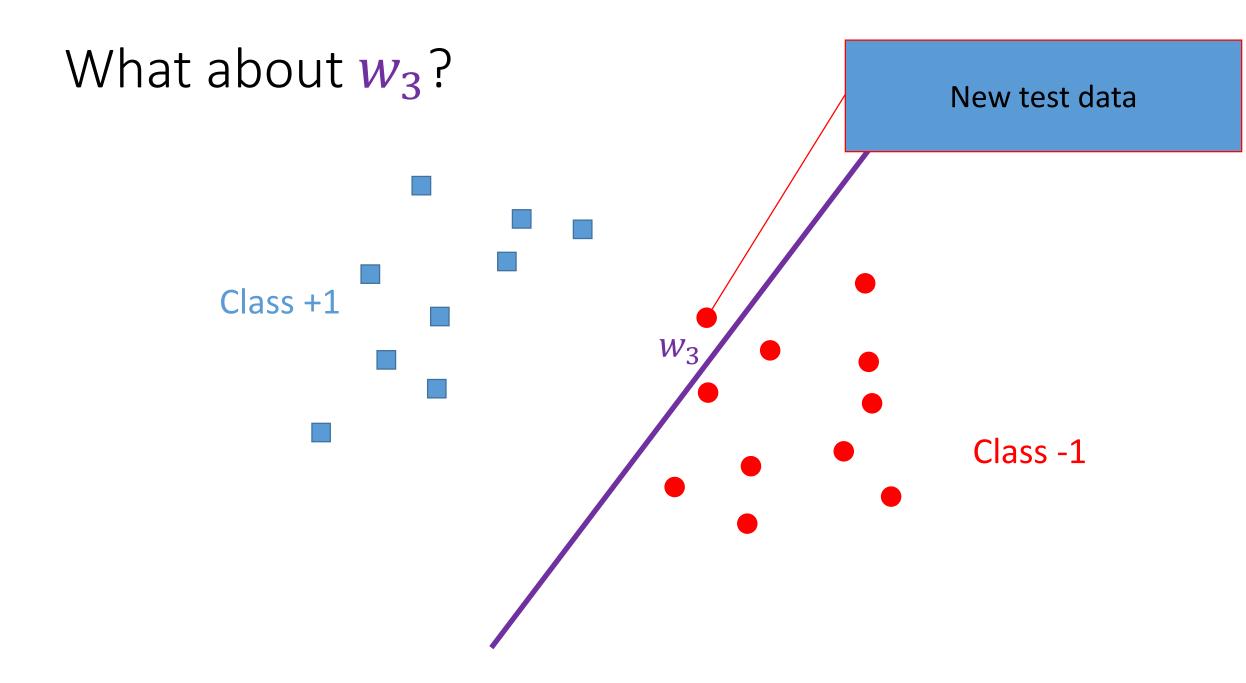
- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Hypothesis $y = \operatorname{sign}(f_w(x)) = \operatorname{sign}(w^T x)$

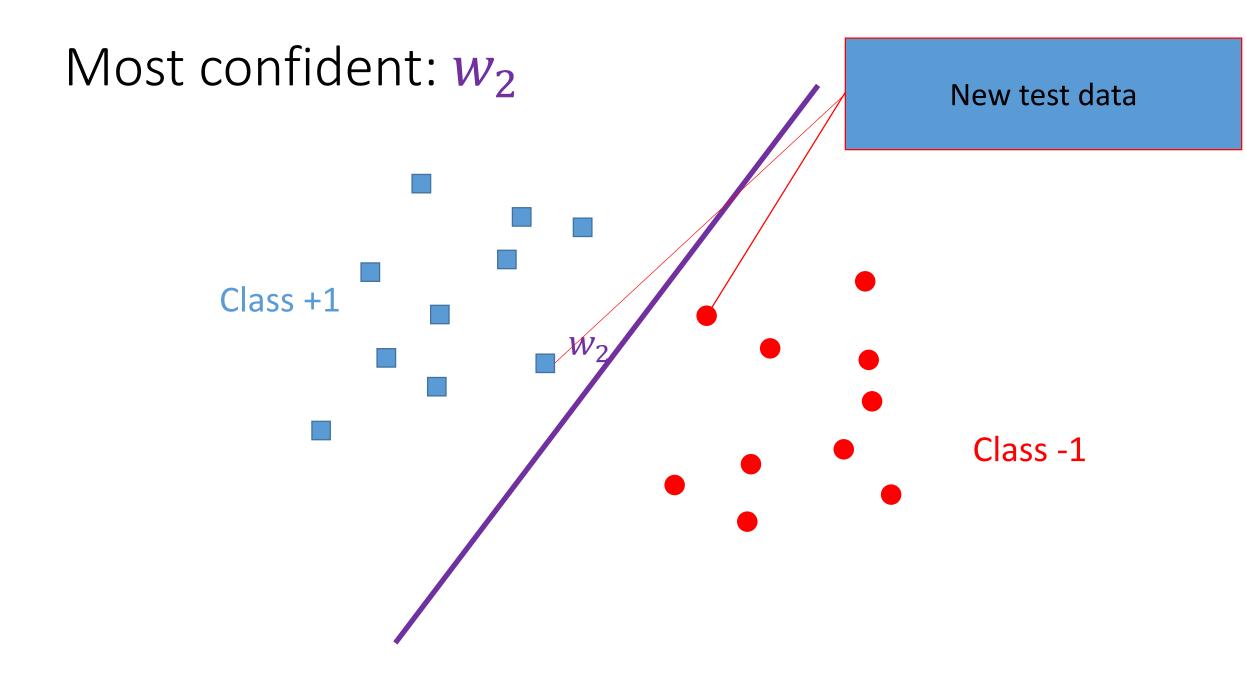
•
$$y = +1$$
 if $w^T x > 0$

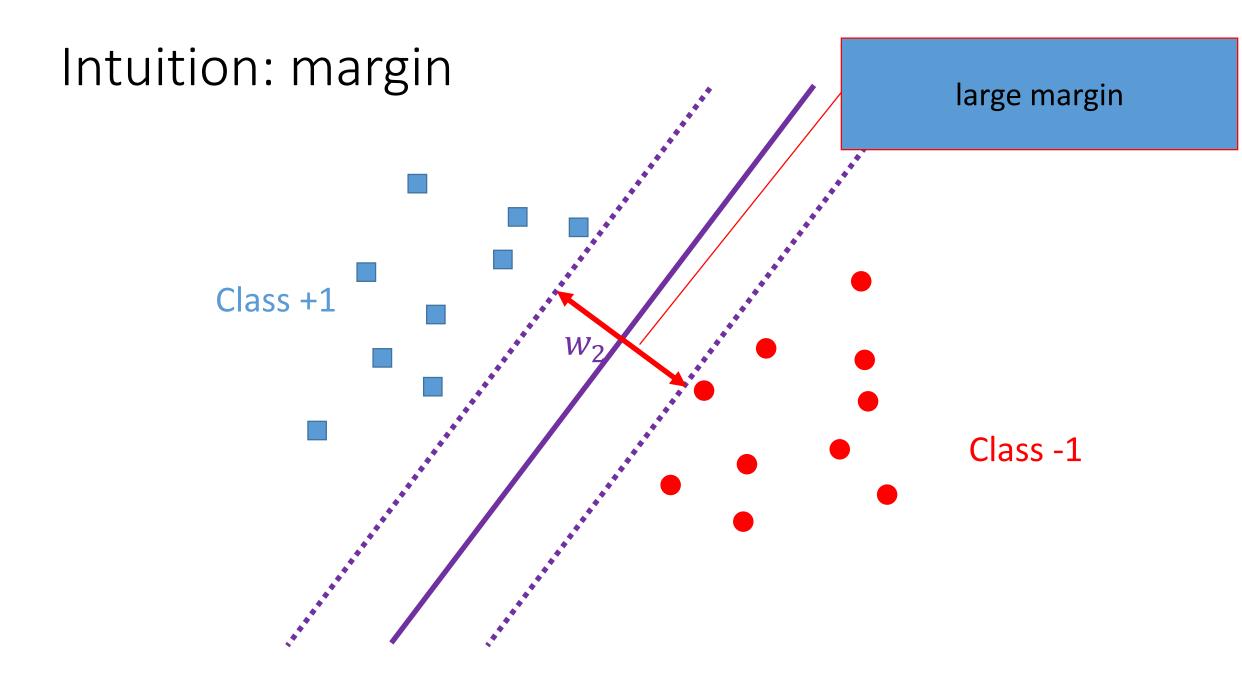
- y = -1 if $w^T x < 0$
- Let's assume that we can optimize to find w











Margin

Margin

- Lemma 1: x has distance $\frac{|f_w(x)|}{||w||}$ to the hyperplane $f_w(x) = w^T x = 0$ Proof:
- *w* is orthogonal to the hyperplane
- The unit direction is $\frac{w}{||w||}$
- The projection of x is $\left(\frac{w}{||w||}\right)^T x = \frac{f_w(x)}{||w||}$

Margin: with bias

- Claim 1: w is orthogonal to the hyperplane $f_{w,b}(x) = w^T x + b = 0$ Proof:
- pick any x_1 and x_2 on the hyperplane
- $w^T x_1 + b = 0$
- $w^T x_2 + b = 0$
- So $w^T(x_1 x_2) = 0$

Margin: with bias

• Claim 2: 0 has distance $\frac{-b}{||w||}$ to the hyperplane $w^T x + b = 0$

Proof:

- pick any x_1 the hyperplane
- Project x_1 to the unit direction $\frac{w}{||w||}$ to get the distance

•
$$\left(\frac{w}{||w||}\right)^T x_1 = \frac{-b}{||w||}$$
 since $w^T x_1 + b = 0$

Margin: with bias

• Lemma 2: x has distance $\frac{|f_{w,b}(x)|}{||w||}$ to the hyperplane $f_{w,b}(x) = w^T x + b = 0$

Proof:

- Let $x = x_{\perp} + r \frac{w}{||w||}$, then |r| is the distance
- Multiply both sides by w^T and add b
- Left hand side: $w^T x + b = f_{w,b}(x)$
- Right hand side: $w^T x_{\perp} + r \frac{w^T w}{||w||} + b = 0 + r||w||$

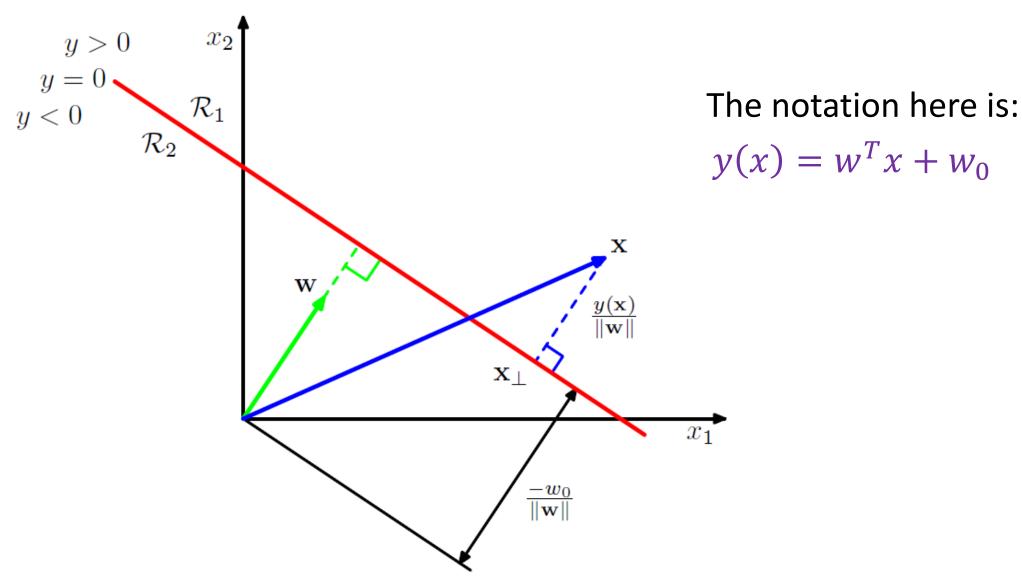


Figure from *Pattern Recognition and Machine Learning*, Bishop

Support Vector Machine (SVM)

SVM: objective

• Margin over all training data points:

$$\gamma = \min_{i} \frac{|f_{w,b}(x_i)|}{||w||}$$

• Since only want correct $f_{w,b}$, and recall $y_i \in \{+1, -1\}$, we have

$$\gamma = \min_{i} \frac{y_i f_{w,b}(x_i)}{||w||}$$

• If $f_{w,b}$ incorrect on some x_i , the margin is negative

SVM: objective

• Maximize margin over all training data points:

$$\max_{w,b} \gamma = \max_{w,b} \min_{i} \frac{y_i f_{w,b}(x_i)}{||w||} = \max_{w,b} \min_{i} \frac{y_i (w^T x_i + b)}{||w||}$$

• A bit complicated ...

SVM: simplified objective

• Observation: when (w, b) scaled by a factor c, the margin unchanged

$$\frac{y_i(cw^T x_i + cb)}{||cw||} = \frac{y_i(w^T x_i + b)}{||w||}$$

• Let's consider a fixed scale such that

$$y_{i^*}(w^T x_{i^*} + b) = 1$$

where x_{i^*} is the point closest to the hyperplane

SVM: simplified objective

• Let's consider a fixed scale such that

 $y_{i^*}(w^T x_{i^*} + b) = 1$

where x_{i^*} is the point closet to the hyperplane

• Now we have for all data

 $y_i(w^T x_i + b) \ge 1$

and at least for one i the equality holds

• Then the margin is $\frac{1}{||w||}$

SVM: simplified objective

• Optimization simplified to

$$\min_{w,b} \frac{1}{2} ||w||^2$$
$$y_i(w^T x_i + b) \ge 1, \forall i$$

- How to find the optimum \widehat{w}^* ?
- Solved by Lagrange multiplier method

Lagrange multiplier

Lagrangian

• Consider optimization problem:

 $\min_{w} f(w)$ $h_i(w) = 0, \forall 1 \le i \le l$

• Lagrangian:

$$\mathcal{L}(w,\boldsymbol{\beta}) = f(w) + \sum_{i} \beta_{i} h_{i}(w)$$

where β_i 's are called Lagrange multipliers

Lagrangian

• Consider optimization problem:

 $w^{w} = 0, \forall 1 \le i \le l$

min f(w)

• Solved by setting derivatives of Lagrangian to 0

$$\frac{\partial \mathcal{L}}{\partial w_i} = 0; \quad \frac{\partial \mathcal{L}}{\partial \beta_i} = 0$$

Generalized Lagrangian

• Consider optimization problem:

 $\min_{w} f(w)$ $g_{i}(w) \leq 0, \forall 1 \leq i \leq k$ $h_{i}(w) = 0, \forall 1 \leq j \leq l$

• Generalized Lagrangian:

$$\mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(w) + \sum_{i} \alpha_{i} g_{i}(w) + \sum_{j} \beta_{j} h_{j}(w)$$

where α_i , β_j 's are called Lagrange multipliers

Generalized Lagrangian

• Consider the quantity:

$$\theta_P(w) \coloneqq \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \geq 0} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

• Why?

 $\theta_P(w) = \begin{cases} f(w), & \text{if } w \text{ satisfies all the constraints} \\ +\infty, & \text{if } w \text{ does not satisfy the constraints} \end{cases}$

• So minimizing f(w) is the same as minimizing $\theta_P(w)$

 $\min_{w} f(w) = \min_{w} \theta_{P}(w) = \min_{w} \max_{\alpha, \beta: \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)$

• The primal problem

$$p^* \coloneqq \min_{w} f(w) = \min_{w} \max_{\alpha, \beta: \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta)$$

• The dual problem

 $d^* \coloneqq \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \geq 0} \min_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})$

• Always true:

$$d^* \leq p^*$$

• The primal problem

$$p^* \coloneqq \min_{w} f(w) = \min_{w} \max_{\alpha, \beta: \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta)$$

• The dual problem

$$d^* \coloneqq \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \geq 0} \min_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

• Interesting case: when do we have

$$d^* = p^*?$$

• Theorem: under proper conditions, there exists (w^*, α^*, β^*) such that

$$d^* = \mathcal{L}(w^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = p^*$$

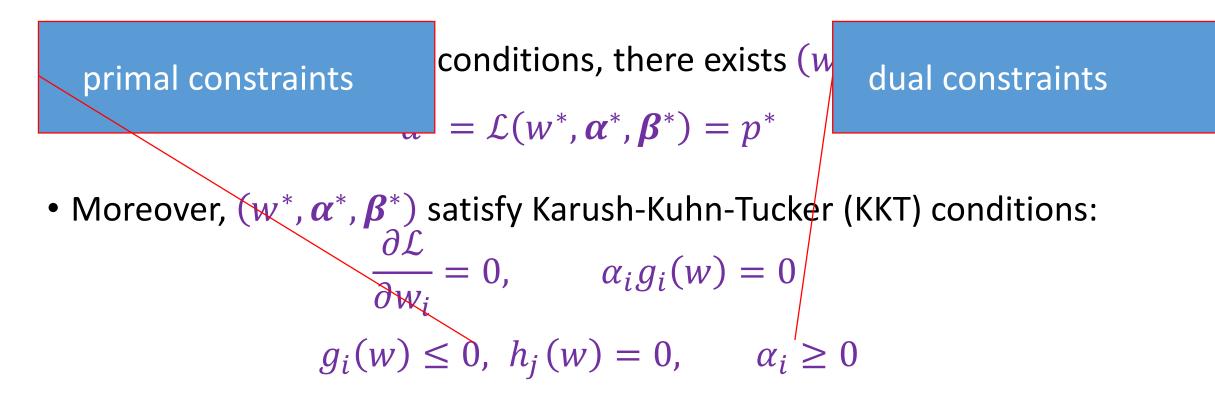
Moreover, $(w^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$ satisfy Karush-Kuhn-Tucker (KKT) conditions: $\frac{\partial \mathcal{L}}{\partial w_i} = 0, \qquad \alpha_i g_i(w) = 0$ $g_i(w) \le 0, \ h_j(w) = 0, \qquad \alpha_i \ge 0$

• Theorem: under proper conditions, there exists (w

$$d^* = \mathcal{L}(w^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = p^*$$

dual complementarity

Moreover, $(w^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$ satisfy Karush-Kuhn-Tucker (KKT) conditions: $\frac{\partial \mathcal{L}}{\partial w_i} = 0, \qquad \alpha_i g_i(w) = 0$ $g_i(w) \le 0, \ h_i(w) = 0, \qquad \alpha_i \ge 0$



- What are the proper conditions?
- A set of conditions (Slater conditions):
 - f, g_i convex, h_j affine, and exists w satisfying all $g_i(w) < 0$

• There exist other sets of conditions

• Check textbooks, e.g., Convex Optimization by Boyd and Vandenberghe

SVM: optimization

SVM: optimization

• Optimization (Quadratic Programming):

 $\min_{w,b} \frac{1}{2} ||w||^2$ $y_i(w^T x_i + b) \ge 1, \forall i$

• Generalized Lagrangian:

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_i \alpha_i [y_i(w^T x_i + b) - 1]$$

where α is the Lagrange multiplier

SVM: optimization

• KKT conditions:

$$\frac{\partial \mathcal{L}}{\partial w} = 0, \Rightarrow w = \sum_{i} \alpha_{i} y_{i} x_{i} (1)$$
$$\frac{\partial \mathcal{L}}{\partial b} = 0, \Rightarrow 0 = \sum_{i} \alpha_{i} y_{i} (2)$$

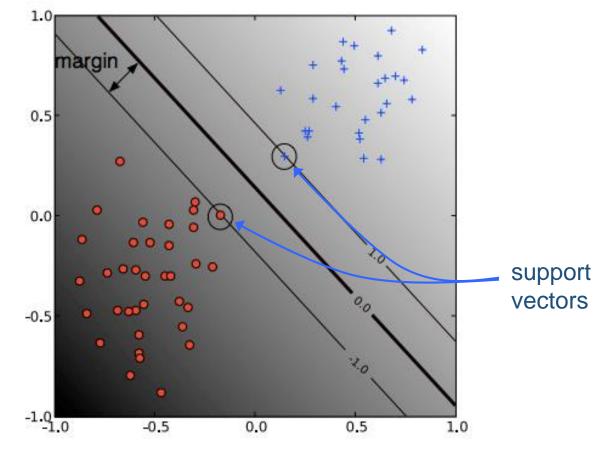
• Plug into \mathcal{L} :

 $\mathcal{L}(w, b, \boldsymbol{\alpha}) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{ij} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$ (3) combined with $0 = \sum_{i} \alpha_{i} y_{i}, \alpha_{i} \ge 0$

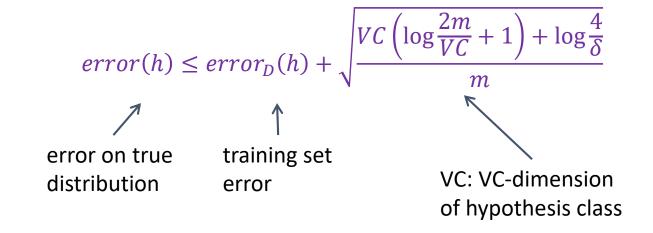
Only depend on inner products SVM: optimization • Reduces to dual problem: $\mathcal{L}(w, b, \boldsymbol{\alpha}) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0, \alpha_{i} \ge 0$ • Since $w = \sum_i \alpha_i y_i x_i$, we have $w^T x + b = \sum_i \alpha_i y_i x_i^T x + b$

Support Vectors

- final solution is a sparse linear combination of the training instances
- those instances with $\alpha_i > 0$ are called *support vectors*
 - they lie on the margin boundary
- solution NOT changed if delete the instances with $\alpha_i = 0$



Learning theory justification



• Vapnik showed a connection between the margin and VC dimension $VC \leq \frac{4R^2}{margin_D(h)}$ constant dependent on training data

thus to minimize the VC dimension (and to improve the error bound)
 maximize the margin