Support Vector Machines Part 1

Yingyu Liang
Computer Sciences 760
Fall 2017

http://pages.cs.wisc.edu/~yliang/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, Tom Dietterich, and Pedro Domingos.
Goals for the lecture

you should understand the following concepts

- the margin
- the linear support vector machine
- the primal and dual formulations of SVM learning
- support vectors
- VC-dimension and maximizing the margin
Motivation
Linear classification

\[(w^*)^T x = 0\]

\[(w^*)^T x > 0\]

\[(w^*)^T x < 0\]

Class +1

Class -1

Assume perfect separation between the two classes
Attempt

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)

• Hypothesis \(y = \text{sign}(f_w(x)) = \text{sign}(w^T x) \)

 • \(y = +1 \) if \(w^T x > 0 \)

 • \(y = -1 \) if \(w^T x < 0 \)

• Let’s assume that we can optimize to find \(w \)
Multiple optimal solutions?

Class +1

\[w_1, w_2, w_3 \]

Class -1

Same on empirical loss;
Different on test/expected loss
What about w_1?
What about w_3?

Class +1

w_3

Class -1

New test data
Most confident: w_2

Class +1

Class -1

New test data
Intuition: margin

Class +1

Class -1

large margin
Margin
Lemma 1: x has distance $\frac{|f_w(x)|}{||w||}$ to the hyperplane $f_w(x) = w^T x = 0$

Proof:

- w is orthogonal to the hyperplane
- The unit direction is $\frac{w}{||w||}$
- The projection of x is $\left(\frac{w}{||w||}\right)^T x = \frac{f_w(x)}{||w||}$
Margin: with bias

• Claim 1: \(\mathbf{w} \) is orthogonal to the hyperplane \(f_{\mathbf{w}, b}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0 \)

Proof:
• pick any \(\mathbf{x}_1 \) and \(\mathbf{x}_2 \) on the hyperplane
 • \(\mathbf{w}^T \mathbf{x}_1 + b = 0 \)
 • \(\mathbf{w}^T \mathbf{x}_2 + b = 0 \)

• So \(\mathbf{w}^T (\mathbf{x}_1 - \mathbf{x}_2) = 0 \)
Margin: with bias

- Claim 2: 0 has distance $\frac{-b}{\|w\|}$ to the hyperplane $w^T x + b = 0$

Proof:
- pick any x_1 the hyperplane
- Project x_1 to the unit direction $\frac{w}{\|w\|}$ to get the distance
- $\left(\frac{w}{\|w\|}\right)^T x_1 = \frac{-b}{\|w\|}$ since $w^T x_1 + b = 0$
Margin: with bias

• Lemma 2: \(x \) has distance \(\frac{|f_{w,b}(x)|}{||w||} \) to the hyperplane \(f_{w,b}(x) = w^T x + b = 0 \)

Proof:
• Let \(x = x_\perp + r \frac{w}{||w||} \), then \(|r| \) is the distance
• Multiply both sides by \(w^T \) and add \(b \)
• Left hand side: \(w^T x + b = f_{w,b}(x) \)
• Right hand side: \(w^T x_\perp + r \frac{w^T w}{||w||} + b = 0 + r ||w|| \)
The notation here is:

\[y(x) = w^T x + w_0 \]
Support Vector Machine (SVM)
SVM: objective

• Margin over all training data points:

\[\gamma = \min_i \frac{|f_{w,b}(x_i)|}{||w||} \]

• Since only want correct \(f_{w,b} \), and recall \(y_i \in \{+1, -1\} \), we have

\[\gamma = \min_i \frac{y_i f_{w,b}(x_i)}{||w||} \]

• If \(f_{w,b} \) incorrect on some \(x_i \), the margin is negative
SVM: objective

• Maximize margin over all training data points:

\[
\max_{w,b} \gamma = \max_{w,b} \min_i \frac{y_i f_{w,b}(x_i)}{|w|} = \max_{w,b} \min_i \frac{y_i (w^T x_i + b)}{|w|}
\]

• A bit complicated ...
SVM: simplified objective

• Observation: when \((w, b)\) scaled by a factor \(c\), the margin unchanged

\[
\frac{y_i(cw^T x_i + cb)}{||cw||} = \frac{y_i(w^T x_i + b)}{||w||}
\]

• Let’s consider a fixed scale such that

\[
y_{i^*}(w^T x_{i^*} + b) = 1
\]

where \(x_{i^*}\) is the point closest to the hyperplane
SVM: simplified objective

• Let’s consider a fixed scale such that

\[y_{i^*} (w^T x_{i^*} + b) = 1 \]

where \(x_{i^*} \) is the point closest to the hyperplane

• Now we have for all data

\[y_i (w^T x_i + b) \geq 1 \]

and at least for one \(i \) the equality holds

• Then the margin is \(\frac{1}{||w||} \)
SVM: simplified objective

• Optimization simplified to

\[
\min_{w,b} \frac{1}{2} ||w||^2
\]

\[y_i(w^T x_i + b) \geq 1, \forall i\]

• How to find the optimum \(\hat{w}^*\) ?
• Solved by Lagrange multiplier method
Lagrange multiplier
Lagrangian

• Consider optimization problem:

$$\min_w f(w)$$

$$h_i(w) = 0, \forall 1 \leq i \leq l$$

• Lagrangian:

$$\mathcal{L}(w, \beta) = f(w) + \sum_i \beta_i h_i(w)$$

where β_i’s are called Lagrange multipliers
Lagrangian

• Consider optimization problem:

\[
\min_w f(w)
\]

\[
h_i(w) = 0, \forall 1 \leq i \leq l
\]

• Solved by setting derivatives of Lagrangian to 0

\[
\frac{\partial L}{\partial w_i} = 0; \quad \frac{\partial L}{\partial \beta_i} = 0
\]
Generalized Lagrangian

• Consider optimization problem:

\[
\begin{align*}
\min_w & \quad f(w) \\
\text{subject to} & \quad g_i(w) \leq 0, \forall 1 \leq i \leq k \\
& \quad h_j(w) = 0, \forall 1 \leq j \leq l
\end{align*}
\]

• Generalized Lagrangian:

\[
\mathcal{L}(w, \alpha, \beta) = f(w) + \sum_i \alpha_i g_i(w) + \sum_j \beta_j h_j(w)
\]

where \(\alpha_i, \beta_j\)'s are called Lagrange multipliers
Generalized Lagrangian

• Consider the quantity:

\[\theta_P(w) := \max_{\alpha, \beta: \alpha_i \geq 0} L(w, \alpha, \beta) \]

• Why?

\[\theta_P(w) = \begin{cases} f(w), & \text{if } w \text{ satisfies all the constraints} \\ +\infty, & \text{if } w \text{ does not satisfy the constraints} \end{cases} \]

• So minimizing \(f(w) \) is the same as minimizing \(\theta_P(w) \)

\[\min_w f(w) = \min_w \theta_P(w) = \min_w \max_{\alpha, \beta: \alpha_i \geq 0} L(w, \alpha, \beta) \]
Lagrange duality

• The primal problem

\[p^* := \min_w f(w) = \min_w \max_{\alpha, \beta: \alpha_i \geq 0} \mathcal{L}(w, \alpha, \beta) \]

• The dual problem

\[d^* := \max_{\alpha, \beta: \alpha_i \geq 0} \min_w \mathcal{L}(w, \alpha, \beta) \]

• Always true:

\[d^* \leq p^* \]
Lagrange duality

• The primal problem

\[p^* := \min_w f(w) = \min_w \max_{\alpha, \beta: \alpha_i \geq 0} \mathcal{L}(w, \alpha, \beta) \]

• The dual problem

\[d^* := \max_{\alpha, \beta: \alpha_i \geq 0} \min_w \mathcal{L}(w, \alpha, \beta) \]

• Interesting case: when do we have

\[d^* = p^*? \]
Lagrange duality

• Theorem: under proper conditions, there exists \((w^*, \alpha^*, \beta^*)\) such that

\[d^* = \mathcal{L}(w^*, \alpha^*, \beta^*) = p^* \]

Moreover, \((w^*, \alpha^*, \beta^*)\) satisfy Karush-Kuhn-Tucker (KKT) conditions:

\[\frac{\partial \mathcal{L}}{\partial w_i} = 0, \quad \alpha_i g_i(w) = 0 \]

\[g_i(w) \leq 0, \quad h_j(w) = 0, \quad \alpha_i \geq 0 \]
Lagrange duality

- Theorem: under proper conditions, there exists \((w^*, \alpha^*, \beta^*)\) such that

\[d^* = \mathcal{L}(w^*, \alpha^*, \beta^*) = p^*\]

Moreover, \((w^*, \alpha^*, \beta^*)\) satisfy Karush-Kuhn-Tucker (KKT) conditions:

\[
\frac{\partial \mathcal{L}}{\partial w_i} = 0, \quad \alpha_i g_i(w) = 0
\]

\[g_i(w) \leq 0, \quad h_j(w) = 0, \quad \alpha_i \geq 0\]
Theorem: under proper conditions, there exists \((w^*, \alpha^*, \beta^*)\) such that
\[d^* = \mathcal{L}(w^*, \alpha^*, \beta^*) = p^* \]

Moreover, \((w^*, \alpha^*, \beta^*)\) satisfy Karush-Kuhn-Tucker (KKT) conditions:
\[\frac{\partial \mathcal{L}}{\partial w_i} = 0, \quad \alpha_i g_i(w) = 0, \quad g_i(w) \leq 0, \quad h_j(w) = 0, \quad \alpha_i \geq 0 \]
Lagrange duality

• What are the proper conditions?
• A set of conditions (Slater conditions):
 • f, g_i convex, h_j affine, and exists w satisfying all $g_i(w) < 0$

• There exist other sets of conditions
 • Check textbooks, e.g., Convex Optimization by Boyd and Vandenberghe
SVM: optimization
SVM: optimization

• Optimization (Quadratic Programming):

\[
\min_{w,b} \frac{1}{2} ||w||^2 \\
y_i(w^T x_i + b) \geq 1, \forall i
\]

• Generalized Lagrangian:

\[
\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_i \alpha_i [y_i(w^T x_i + b) - 1]
\]

where \(\alpha \) is the Lagrange multiplier
SVM: optimization

• KKT conditions:
 \[
 \frac{\partial L}{\partial w} = 0, \quad \Rightarrow \quad w = \sum_i \alpha_i y_i x_i \quad (1)
 \]
 \[
 \frac{\partial L}{\partial b} = 0, \quad \Rightarrow \quad 0 = \sum_i \alpha_i y_i \quad (2)
 \]

• Plug into \(L \):
 \[
 L(w, b, \alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_{ij} \alpha_i \alpha_j y_i y_j x_i^T x_j \quad (3)
 \]
 combined with \(0 = \sum_i \alpha_i y_i, \alpha_i \geq 0 \)
SVM: optimization

• Reduces to dual problem:

\[\mathcal{L}(w, b, \alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_{ij} \alpha_i \alpha_j y_i y_j x_i^T x_j \]

\[\sum_i \alpha_i y_i = 0, \alpha_i \geq 0 \]

• Since \(w = \sum_i \alpha_i y_i x_i \), we have \(w^T x + b = \sum_i \alpha_i y_i x_i^T x + b \)
Support Vectors

• final solution is a sparse linear combination of the training instances

• those instances with $\alpha_i > 0$ are called *support vectors*
 • they lie on the margin boundary
• solution NOT changed if delete the instances with $\alpha_i = 0$
Learning theory justification

\[
\text{error}(h) \leq \text{error}_D(h) + \sqrt{\frac{VC \left(\log \frac{2m}{VC} + 1 \right) + \log \frac{4}{\delta}}{m}}
\]

- Vapnik showed a connection between the margin and VC dimension
 \[
 VC \leq \frac{4R^2}{\text{margin}_D(h)}
 \]
 constant dependent on training data
- thus to minimize the VC dimension (and to improve the error bound)
 \[
 \Rightarrow \text{maximize the margin}
 \]