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Goals for the lecture

you should understand the following concepts

• ensemble

• bootstrap sample

• bagging

• boosting

• random forests

• error correcting output codes
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What is an ensemble?

a set of learned models whose individual decisions are combined in 

some way to make predictions for new instances
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When can an ensemble be more accurate?
• when the errors made by the individual predictors are 

(somewhat) uncorrelated, and the predictors’ error rates are 

better than guessing (< 0.5 for 2-class problem)

• consider an idealized case…

error rate of ensemble

is represented by

probability mass in this box 

= 0.026

Figure from Dietterich, AI Magazine, 1997
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How can we get diverse classifiers?

• In practice, we can’t get classifiers whose errors are completely 

uncorrelated, but we can encourage diversity in their errors by

• choosing a variety of learning algorithms

• choosing a variety of settings (e.g. # hidden units in neural 

nets) for the learning algorithm

• choosing different subsamples of the training set (bagging)

• using different probability distributions over the training 

instances (boosting, skewing)

• choosing different features and subsamples (random forests)
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Bagging (Bootstrap Aggregation)
[Breiman, Machine Learning 1996]

learning:

given: learner L, training set D = {〈x1, y1〉… 〈xm, ym〉 }

for i ← 1 to T do

D(i) ← m instances randomly drawn with replacement from D

hi ← model learned using L on D(i)

classification:

given: test instance x

predict y ← plurality_vote( h1(x) … hT(x) )

regression:

given: test instance xt

predict y ← mean( h1(x) … hT(x) )
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Bagging

• each sampled training set is a bootstrap replicate

• contains m instances (the same as the original training set)

• on average it includes 63.2% of the original training set

• some instances appear multiple times

• can be used with any base learner

• works best with unstable learning methods: those for which small 

changes in D result in relatively large changes in learned 

models, i.e., those that tend to overfit training data
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Empirical evaluation of bagging with C4.5
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Bagging reduced error of C4.5 on most data sets; wasn’t harmful on any
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Boosting

• Boosting came out of the PAC learning community

• A weak PAC learning algorithm is one that cannot PAC learn for 

arbitrary ε and δ, but it can for some: its hypotheses are at least 

slightly better than random guessing

• Suppose we have a weak PAC learning algorithm L for a concept 

class C.  Can we use L as a subroutine to create a (strong) PAC 

learner for C?

• Yes, by boosting! [Schapire, Machine Learning 1990]

• The original boosting algorithm was of theoretical interest, but 

assumed an unbounded source of training instances

• A later boosting algorithm, AdaBoost, has had notable practical 

success
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AdaBoost
[Freund & Schapire, Journal of Computer and System Sciences, 1997]

given: learner L, # stages T, training set D = {〈x1, y1〉… 〈xm, ym〉 }

for all i :  w1(i) ← 1/m // initialize instance weights

for t ← 1 to T do

for all i :  pt(i) ← wt(i) / (Σj wt(j))                    // normalize 

weights

ht ← model learned using L on D and pt

εt ← Σi pt(i)(1 - δ(ht(xi), yi))                       // calculate weighted 

error

if εt > 0.5 then

T ← t – 1

break

βt ← εt / (1 – εt) // lower error, smaller βt

for all i where ht(xi) = yi // downweight correct examples

wt+1(i) ← wt(i) βt

return: 10
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Implementing weighted instances with 

AdaBoost

• AdaBoost calls the base learner L with probability distribution pt

specified by weights on the instances

• there are two ways to handle this

1. Adapt L to learn from weighted instances; straightforward for 

decision trees and naïve Bayes, among others

2. Sample a large (>> m) unweighted set of instances 

according to pt ; run L in the ordinary manner

11



Empirical evaluation of boosting with C4.5

Figure from Dietterich, AI Magazine, 1997
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Bagging and boosting with C4.5
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Empirical study of bagging vs. boosting
[Opitz & Maclin, JAIR 1999] 

• 23 data sets

• C4.5 and neural nets as base learners

• bagging almost always better than single 

decision tree or neural net

• boosting can be much better than bagging

• however, boosting can sometimes reduce accuracy

(too much emphasis on outliers?)
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Random forests
[Breiman, Machine Learning 2001]

given: candidate feature splits F, training set D = {〈x1, y1〉…〈xm, ym〉}

for i ← 1 to T do

D(i) ← m instances randomly drawn with replacement from D

hi ← randomized decision tree learned with F, D(i)

randomized decision tree learning:

to select a split at a node

R ← randomly select (without replacement) f feature splits from F

(where f << |F| )

choose the best feature split in R

do not prune trees

classification/regression:

as in bagging
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Learning models for multi-class problems

• consider a learning task with k > 2 classes

• with some learning methods, we can learn one model to predict 

the k classes

• an alternative approach is to learn k models; each represents 

one class vs. the rest

• but we could learn models to represent other encodings as well
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Error correcting output codes
[Dietterich & Bakiri, JAIR 1995]

• ensemble method devised specifically for problems with many classes

• represent each class by a multi-bit code word

• learn a classifier to represent each bit function
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Classification with ECOC

• to classify a test instance x using an ECOC ensemble with T classifiers

1. form a vector h(x) = 〈h1(x) … hT(x) 〉 where hi(x) is the prediction of 

the model for the ith bit

2. find the codeword c with the smallest Hamming distance to h(x)

3. predict the class associated with c

recall, ⎣x⎦ is the largest

integer not greater than x

• if the minimum Hamming distance between any pair of codewords is d, 

we can still get the right classification with          single-bit errors
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Error correcting code design

a good ECOC should satisfy two properties

1. row separation: each codeword should be well separated in 

Hamming distance from every other codeword

2. column separation: each bit position should be uncorrelated 

with the other bit positions

7 bits apart

6 bits apart 19errors 3
2
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ECOC evaluation with C4.5

Figure from Bakiri & Dietterich, JAIR, 1995
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ECOC evaluation with neural nets

Figure from Bakiri & Dietterich, JAIR, 1995
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Other Ensemble Methods

• Use different parameter settings with 

same algorithm

• Use different learning algorithms

• Instead of voting or weighted voting, 

learn the combining function itself

– Called “Stacking”

– Higher risk of overfitting

– Ideally, train arbitrator function on different 

subset of data than used for input models

• Naïve Bayes is weighted vote of stumps
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Comments on ensembles

• They very often provide a boost in accuracy over base learner

• It’s a good idea to evaluate an ensemble approach for almost 

any practical learning problem

• They increase runtime over base learner, but compute cycles are 

usually much cheaper than training instances

• Some ensemble approaches (e.g. bagging, random forests) are 

easily parallelized

• Prediction contests (e.g. Kaggle, Netflix Prize) usually won by 

ensemble solutions

• Ensemble models are usually low on the comprehensibility scale, 

although see work by

[Craven & Shavlik, NIPS 1996]

[Domingos, Intelligent Data Analysis 1998]

[Van Assche & Blockeel, ECML 2007] 23


