Feature Selection

Yingyu Liang Computer Sciences 760 Fall 2017

http://pages.cs.wisc.edu/~yliang/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, Tom Dietterich, and Pedro Domingos.

Goals for the lecture

you should understand the following concepts

- filtering-based feature selection
- information gain filtering
- Markov blanket filtering
- frequency pruning
- wrapper-based feature selection
- forward selection
- backward elimination
- L₁ and L₂ penalties
- lasso and Ridge regression
- dimensionality reduction

Motivation for feature selection

- 1. We want models that we can interpret. We're specifically interested in which features are relevant for some task.
- 2. We're interested in getting models with better predictive accuracy, and feature selection may help.
- 3. We are concerned with efficiency. We want models that can be learned in a reasonable amount of time, and/or are compact and efficient to use.

Motivation for feature selection

- some learning methods are sensitive to irrelevant or redundant features
 - *k*-NN
 - naïve Bayes
 - etc.
- other learning methods are ostensibly insensitive to irrelevant features (e.g. Weighted Majority) and/or redundant features (e.g. decision tree learners)
- empirically, feature selection is sometimes useful even with the latter class of methods [Kohavi & John, *Artificial Intelligence* 1997]

Feature selection approaches

model

Information gain filtering

 select only those features that have significant information gain (mutual information with the class variable)

- unlikely to select features that are highly predictive only when combined with other features
- may select many redundant features

Markov blanket filtering

[Koller & Sahami, *ICML* 1996]

- a Markov blanket M_i for a variable X_i is a set of variables such that all other variables are conditionally independent of X_i given M_i
- we can try to find and remove features that minimize the criterion:

$$D(X_{i}, \boldsymbol{M}_{i}) = \sum_{\boldsymbol{x}_{M_{i}}, x_{i}} \begin{bmatrix} P(\boldsymbol{M}_{i} = \boldsymbol{x}_{M_{i}}, X_{i} = x_{i}) \times \\ D_{KL} \left(P(Y \mid \boldsymbol{M}_{i} = \boldsymbol{x}_{M_{i}}, X_{i} = x_{i}) \parallel P(Y \mid \boldsymbol{M}_{i} = \boldsymbol{x}_{M_{i}}) \right) \end{bmatrix}$$

Kullback-Leibler divergence (distance between 2 distributions)

• if *Y* is conditionally independent of feature X_i given a subset of other features, we should be able to omit X_i

Bayes net view of a Markov blanket $P(X_i | M_i, Z) = P(X_i | M_i)$

• the Markov blanket M_i for variable X_i consists of its parents, its children, and its children's parents χ

 but we know that finding the best Bayes net structure is NP-hard; can we find approximate Markov blankets efficiently? Heuristic method to find an approximate Markov blanket

$$\mathsf{D}(X_i, \boldsymbol{M}_i) = \sum_{\boldsymbol{x}_{\boldsymbol{M}_i}, \boldsymbol{x}_i} \begin{bmatrix} P(\boldsymbol{M}_i = \boldsymbol{x}_{\boldsymbol{M}_i}, X_i = \boldsymbol{x}_i) \times \\ D_{KL} \left(P(Y \mid \boldsymbol{M}_i = \boldsymbol{x}_{\boldsymbol{M}_i}, X_i = \boldsymbol{x}_i) \parallel P(Y \mid \boldsymbol{M}_i = \boldsymbol{x}_{\boldsymbol{M}_i}) \right) \end{bmatrix}$$

// initialize feature set to include all features F = X

iterate

for each feature X_i in Flet M_i be set of k features most correlated with X_i compute $\Delta(X_i, M_i)$ choose the X_r that minimizes $\Delta(X_r, M_r)$ $F = F - \{X_r\}$ return F

Another filtering-based method: frequency pruning

- remove features whose value distributions are highly skewed
- common to remove very high-frequency and low-frequency words in text-classification tasks such as spam filtering

From fid	lelity <find-dai< th=""><th>ily@littlesossuscamp.com>1</th><th>♦ Reply ➡ Forward ➡ Arcl</th><th>hive O Delete</th><th></th></find-dai<>	ily@littlesossuscamp.com>1	♦ Reply ➡ Forward ➡ Arcl	hive O Delete	
Subject \$2	Sk-life-policy	-for-\$1-per-month		9/4/12 2:57 P	
То Ма	ark Craven🚖			Other Action	
Junk	k Mail			Not Junk	
\$250 \$10/i),000 li month	ife insurance policy	for around		
ΙГ	From Dr. S	anusi Joseph <joseph@yahoo.com>😭</joseph@yahoo.com>	S Reply Sorward	Archive O Del	ete
	Subject AFTE	R A SERIOUS THOUGHT		9/4/12 5:3	r Pf
	Reply to sanus	sijoseph⊜yahoo.cn≌			
\$250,00 policy 1	To undis	closed-recipients: 🛱		Other Act	on
	allik lunk Mall				
	Junk Ma	411		Not Juni	9
.click h	Dear friend				
protect	Dear menu.				
\$250k g	I decided to	reach you directly and personally because	i do not have anything against y	you, but your	
	time in the c	From breaking news <find-daily@illinoiscon< th=""><th>mittee.com>\$</th><th>Forward</th><th>Chive O Delete</th></find-daily@illinoiscon<>	mittee.com>\$	Forward	Chive O Delete
1	ministries he	Subject green-coffee-bean-study-results:-t	hey-lost-17lbs-in-22-weeks		9/4/12 7:22 PM
13	to help prog	To Mark Craven			Other Actions
	According to money has would give r when they s paid, instead threats.1 imp	Junk Mail			Not Junk
		Is this email not displaying correctly? View it in your browser.			
	fund and int	green-coffee-bear	n-study-results:	-they-	
	work, they s	groon conce boar	rotady robalto.	they	
	success. I w	lost-1/lbs-in-22-w	eeks		
-	breach of th				
	Dr-Oz is calling this a "Miracle-In-A-Bottle".				
	The Fresh Green Bean Coffee Diet is being halled a medical breakthrough in weight loss.			ugh in weight loss.	
		READ FULL ARTICLE HERE			

some words occur so <u>frequently</u> that they are not informative about a document's class

> the be to of

some words occur so <u>infrequently</u> that they are not useful for classification *accubation cacodaemonomania echopraxia ichneutic zoosemiotics*

. . .

Example: feature selection for cancer classification

- classification task is to distinguish two types of leukemia: AML, ALL
- 7130 features represent expression levels of genes in tumor samples
- 72 instances (patients)
- three-stage filtering approach which includes information gain and Markov blanket [Xing et al., ICML 2001]

Wrapper-based feature selection

- frame the feature-selection task as a search problem
- evaluate each feature set by using the <u>learning method</u> to score it (how accurate of a model can be learned with it?)

Feature selection as a search problem

```
state = set of features
```

operators add/subtract a feature

scoring function

training or tuning-set or CV accuracy using learning method on a given state's feature set

Forward selection

Given: feature set $\{X_i, ..., X_n\}$, training set *D*, learning method *L*

```
F \leftarrow \{ \}
while score of F is improving
for i \leftarrow 1 to n do
if X_i \notin F
G_i \leftarrow F \cup \{X_i\}
Score_i = Evaluate(G_i, L, D)
F \leftarrow G_b with best Score_b
return feature set F
```

scores feature set *G* by learning model(s) with *L* and assessing its (their) accuracy

Forward selection

Backward elimination

Forward selection vs. backward elimination

• both use a hill-climbing search

forward selection

- efficient for choosing a small subset of the features
- misses features whose usefulness requires other features (feature synergy)

backward elimination

- efficient for discarding a small subset of the features
- preserves features whose usefulness requires other features

Feature selection via shrinkage (regularization)

- instead of explicitly selecting features, in some approaches we can bias the learning process towards using a small number of features
- key idea: objective function has two parts
 - term representing error minimimization
 - term that "shrinks" parameters toward 0

Linear regression

• consider the case of linear regression

$$f(\mathbf{x}) = w_0 + \sum_{i=1}^n x_i w_i$$

• the standard approach minimizes sum squared error

$$E(\mathbf{w}) = \sum_{d \in D} \left(y^{(d)} - f(\mathbf{x}^{(d)}) \right)^2$$
$$= \sum_{d \in D} \left(y^{(d)} - w_0 - \sum_{i=1}^n x_i^{(d)} w_i \right)^2$$

Ridge regression and the Lasso

• Ridge regression adds a penalty term, the L₂ norm of the weights

$$E(\mathbf{w}) = \sum_{d \in D} \left(y^{(d)} - w_0 - \sum_{i=1}^n x_i^{(d)} w_i \right)^2 + \lambda \sum_{i=1}^n w_i^2$$

 the Lasso method adds a penalty term, the L₁ norm of the weights

$$E(\mathbf{w}) = \sum_{d \in D} \left(y^{(d)} - w_0 - \sum_{i=1}^n x_i^{(d)} w_i \right)^2 + \lambda \sum_{i=1}^n |w_i|$$

Lasso optimization

$$\arg\min_{w} \sum_{d \in D} \left(y^{(d)} - w_0 - \sum_{i=1}^n x_i^{(d)} w_i \right)^2 + \lambda \sum_{i=1}^n |w_i|$$

 this is equivalent to the following constrained optimization problem (we get the formulation above by applying the method of Lagrange multipliers to the formulation below)

$$\arg\min_{\mathbf{w}} \sum_{d \in D} \left(y^{(d)} - w_0 - \sum_{i=1}^n x_i^{(d)} w_i \right)^2 \text{ subject to } \sum_{i=1}^n |w_i| \le t$$

Ridge regression and the Lasso

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Figure from Hastie et al., The Elements of Statistical Learning, 2008

Feature selection via shrinkage

- Lasso (L₁) tends to make many weights 0, inherently performing feature selection
- Ridge regression (L₂) shrinks weights but isn't as biased towards selecting features
- L₁ and L₂ penalties can be used with other learning methods (logistic regression, neural nets, SVMs, etc.)
- both can help avoid overfitting by reducing variance
- there are many variants with somewhat different biases
 - elastic net: includes L₁ and L₂ penalties
 - group lasso: bias towards selecting defined groups of features
 - fused lasso: bias towards selecting "adjacent" features in a defined chain
 - etc.

Comments on feature selection

- filtering-based methods are generally more efficient
- wrapper-based methods use the inductive bias of the learning method to select features
- forward selection and backward elimination are most common search methods in the wrapper appraoach, but others can be used [Kohavi & John, Artificial Intelligence 1997]
- feature-selection methods may sometimes be beneficial to get
 - more comprehensible models
 - more accurate models
- for some types of models, we can incorporate feature selection into the learning process (e.g. L₁ regularization)
- dimensionality reduction methods may sometimes lead to more accurate models, but often lower comprehensibility