Reinforcement Learning Part 1

Yingyu Liang Computer Sciences 760 Fall 2017

http://pages.cs.wisc.edu/~yliang/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, Tom Dietterich, and Pedro Domingos.

Goals for the lecture

you should understand the following concepts

- the reinforcement learning task
- Markov decision process
- value functions
- value iteration
- Q functions
- Q learning

Reinforcement learning (RL)

Task of an agent embedded in an environment

repeat forever

- 1) sense world
- 2) reason
- 3) choose an action to perform
- 4) get feedback (usually reward = 0)
- 5) learn

the environment may be the physical world or an artificial one

Reinforcement learning

- set of states S
- set of actions A
- at each time *t*, agent observes state $s_t \in S$ then chooses action $a_t \in A$
- then receives reward r_t and changes to state s_{t+1}

Reinforcement learning as a Markov decision process (MDP)

Markov assumption

$$P(s_{t+1} \mid s_t, a_t, s_{t-1}, a_{t-1}, \dots) = P(s_{t+1} \mid s_t, a_t)$$

• also assume reward is Markovian $P(r_{t+1} \mid s_t, a_t, s_{t-1}, a_{t-1}, ...) = P(r_{t+1} \mid s_t, a_t)$

Goal: learn a policy $\pi: S \to A$ for choosing actions that maximizes

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ...]$$
 where $0 \le \gamma < 1$

for every possible starting state s_0

Reinforcement learning task

• Suppose we want to learn a control policy $\pi : S \to A$ that maximizes $\sum_{t=0}^{\infty} \gamma^t E[r_t]$ from every state $s \in S$

each arrow represents an action a and the associated number represents deterministic reward r(s, a)

Value function for a policy

• given a policy $\pi : S \to A$ define

$$V^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} E[r_{t}]$$

assuming action sequence chosen according to π starting at state *s*

• we want the optimal policy π^* where

$$\rho^* = \operatorname{arg\,max}_{\rho} V^{\rho}(s)$$
 for all s

we'll denote the value function for this optimal policy as $V^*(s)$

Value function for a policy π

• Suppose π is shown by red arrows, $\gamma = 0.9$

 $V^{\pi}(s)$ values are shown in red

Value function for an optimal policy π^*

• Suppose π^* is shown by red arrows, $\gamma = 0.9$

V*(s) values are shown in red

Using a value function

If we know $V^*(s)$, $r(s_t, a)$, and $P(s_t | s_{t-1}, a_{t-1})$ we can compute $\pi^*(s)$

$$\pi^*(s_t) = \arg\max_{a \in A} \left[r(s_t, a) + \gamma \sum_{s \in S} P(s_{t+1} = s \mid s_t, a) V^*(s) \right]$$

Value iteration for learning $V^*(s)$

```
initialize V(s) arbitrarily
loop until policy good enough
{
     loop for s \in S
          loop for a \in A
            Q(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V(s')
         V(s) \leftarrow \max_a Q(s,a)
     }
}
```

Value iteration for learning $V^*(s)$

- V(s) converges to $V^*(s)$
- works even if we randomly traverse environment instead of looping through each state and action methodically
 - but we must visit each state infinitely often
- implication: we can do online learning as an agent roams around its environment
- assumes we have a model of the world: i.e. know $P(s_t | s_{t-1}, a_{t-1})$
- What if we don't?

Q learning

define a new function, closely related to V^*

$$V^*(s) \leftarrow E[r(s,\pi^*(s))] + \gamma E_{s'|s,\pi^*(s)}[V^*(s')]$$
$$Q(s,a) \leftarrow E[r(s,a)] + \gamma E_{s'|s,a}[V^*(s')]$$

if agent knows Q(s, a), it can choose optimal action without knowing P(s' | s, a)

$$\pi^*(s) \leftarrow \arg\max_a Q(s,a) \qquad V^*(s) \leftarrow \max_a Q(s,a)$$

and it can learn Q(s, a) without knowing P(s' | s, a)

Q values

r(s, a) (immediate reward) values

 $V^*(s)$ values

Q(s, a) values

Q learning for deterministic worlds

for each *s*, *a* initialize table entry $\hat{Q}(s,a) \leftarrow 0$ observe current state *s* do forever select an action *a* and execute it receive immediate reward *r* observe the new state *s*' update table entry $\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$ $s \leftarrow s'$

Updating Q

$$\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')$$
$$\leftarrow 0 + 0.9 \max\{63, 81, 100\}$$
$$\leftarrow 90$$

Q learning for nondeterministic worlds

for each *s*, *a* initialize table entry $\hat{Q}(s,a) \leftarrow 0$

observe current state *s*

do forever

select an action a and execute it

receive immediate reward r

observe the new state s'

update table entry

$$\hat{Q}_n(s,a) \leftarrow (1-\alpha_n)\hat{Q}_{n-1}(s,a) + \alpha_n \left[r + \gamma \max_{a'} \hat{Q}_{n-1}(s',a')\right]$$

$$\leftarrow s'$$

where α_n is a parameter dependent on the number of visits to the given (*s*, *a*) pair

S

$$\mathcal{A}_n = \frac{1}{1 + \mathsf{visits}_n(s, a)}$$

Convergence of *Q* learning

- *Q* learning will converge to the correct *Q* function
 - in the deterministic case
 - in the nondeterministic case (using the update rule just presented)

• in practice it is likely to take many, many iterations