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Some of the slides in these lectures have been adapted/borrowed from materials developed 

by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad

Hazan, Tom Dietterich, and Pedro Domingos. 



Goals for the lecture

you should understand the following concepts

• value functions and value iteration (review)

• Q functions and Q learning (review)

• exploration vs. exploitation tradeoff

• compact representations of Q functions

• reinforcement learning example
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Value function for a policy

• given a policy π : S → A define

assuming action sequence chosen

according to π starting at state s

• we want the optimal policy π* where

 
p * = argmaxp V

p (s)   for all s

we’ll denote the value function for this optimal policy as V*(s)
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Value iteration for learning V*(s)

initialize V(s) arbitrarily

loop until policy good enough

{

loop for s ∈ S

{

loop for a ∈ A

{

}

}

}
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Q learning

define a new function, closely related to V*

if agent knows Q(s, a), it can choose optimal action without 

knowing P(s’ | s, a) 

and it can learn Q(s, a) without knowing P(s’ | s, a) 
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Q learning for deterministic worlds

for each s, a initialize table entry

observe current state s

do forever

select an action a and execute it

receive immediate reward r

observe the new state s’

update table entry

s ← s’
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Q learning for nondeterministic worlds

for each s, a initialize table entry

observe current state s

do forever

select an action a and execute it

receive immediate reward r

observe the new state s’

update table entry

s ← s’

 

an =
1

1+ visitsn(s,a)

where αn is a parameter dependent

on the number of visits to the given

(s, a) pair
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Q’s vs. V’s 

• Which action do we choose when we’re in a given state?

• V’s (model-based)

– need to have a ‘next state’ function to generate all possible 

states

– choose next state with highest V value.

• Q’s (model-free)

– need only know which actions are legal

– generally choose next state with highest Q value.

V V

V

Q

Q
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Exploration vs. Exploitation

• in order to learn about better alternatives, we shouldn’t always 

follow the current policy (exploitation)

• sometimes, we should select random actions (exploration)

• one way to do this: select actions probabilistically according to:

where c > 0 is a constant that determines how strongly selection 

favors actions with higher Q values
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Q learning with a table

As described so far, Q learning entails filling in a huge table

A table is a very 

verbose way to

represent a function

s0 s1 s2 . . .           sn

a1

a2

a3

.

.

.

ak

. . . Q(s2, a3)

.

.

.

actions

states
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Q(s, a1)

Q(s, a2)

Q(s, ak)

Representing Q functions 

more compactly

We can use some other function representation (e.g. a neural net) 

to compactly encode a substitute for the big table

encoding of 

the state (s)

or could have one net

for each possible action

each input unit encodes 

a property of the state 

(e.g., a sensor value)
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Why use a compact Q function?

1. Full Q table may not fit in memory for realistic problems

2. Can generalize across states,  thereby speeding up 
convergence

i.e. one instance ‘fills’ many cells in the Q table

Notes

1. When generalizing across states, cannot use α=1

2. Convergence proofs only apply to Q tables

3. Some work on bounding errors caused by using compact 
representations   (e.g. Singh & Yee, Machine Learning 1994)

12



Given: 100 Boolean-valued features

10 possible actions

Size of Q table

10 × 2100 entries

Size of Q net (assume 100 hidden units)

100 × 100   +  100 × 10 = 11,000 weights

Q tables vs. Q nets

weights between 

inputs and HU’s
weights between 

HU’s and outputs 
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Representing Q functions 

more compactly

• we can use other regression methods to represent Q functions

k-NN

regression trees

support vector regression

etc.
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Q learning with function approximation

1. measure sensors, sense state s0

2. predict                 for each action a

3. select action a to take (with randomization to 

ensure exploration)

4. apply action a in the real world

5. sense new state s1 and immediate reward r

6. calculate action a’ that maximizes

7. train with new instance

Q̂n(s0,a)

Q̂n(s1,a ')
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Calculate Q-value you would have put into Q-table, 

and use it as the training label 



ML example: reinforcement learning 

to control an autonomous helicopter

video of Stanford University autonomous helicopter from http://heli.stanford.edu/16



Stanford autonomous helicopter

sensing the helicopter’s state

• orientation sensor

accelerometer

rate gyro

magnetometer

• GPS receiver (“2cm accuracy as long as its antenna is 

pointing towards the sky”)

• ground-based cameras

actions to control the helicopter



1. Expert pilot demonstrates the airshow several times

2. Learn a reward function based on desired trajectory

3. Learn a dynamics model

4. Find the optimal control policy for learned reward and dynamics 

model

5. Autonomously fly the airshow

6. Learn an improved dynamics model.  Go back to step 4

Experimental setup for helicopter



Learning dynamics model P(st+1 | st,  a)

• state represented by helicopter’s

x,y,z( )

w x ,w y,w z( )

u1,u2,u3,u4( )

• action represented by manipulations of 4 controls

position

velocity

angular velocity

• dynamics model predicts accelerations as a function of current state 

and  actions

• accelerations are integrated to compute the predicted next state



Learning dynamics model P(st+1 | st,  a)

• A, B, C, D represent model parameters

• g represents gravity vector

• w’s are random variables representing noise and unmodeled effects

• linear regression task!

dynamics

model



Learning a desired trajectory

• repeated expert demonstrations are often suboptimal in different ways

• given a set of M demonstrated trajectories

state on jth step of trajectory kaction on jth step of trajectory k

• try to infer the implicit desired trajectory

1,...,0,1,...,0for       







 MkNj

u

s
y

k

j

k

jk

j

,...,Ht
u

s
z

t

t

t 0for       
*

*













Learning a desired trajectory

Figure from Coates et al.,CACM 2009 

colored lines: demonstrations of two loops

black line: inferred trajectory



Learning reward function

• EM is used to infer desired trajectory from set of demonstrated 

trajectories

• The reward function is based on deviations from the desired trajectory



Finding the optimal control policy

• finding the control policy is a reinforcement learning task

• RL learning methods described earlier don’t quite apply because state 

and action spaces are both continuous

• A special type of Markov decision process in which the optimal policy 

can be found efficiently

• reward is represented as a linear function of state and action 

vectors

• next state is represented as a linear function of current state and 

action vectors

• They use an iterative approach that finds an approximate solution  

because the reward function used is quadratic
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