Reinforcement Learning Part 2

Yingyu Liang Computer Sciences 760 Fall 2017

http://pages.cs.wisc.edu/~yliang/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, Tom Dietterich, and Pedro Domingos.

Goals for the lecture

you should understand the following concepts

- value functions and value iteration (review)
- Q functions and Q learning (review)
- exploration vs. exploitation tradeoff
- compact representations of Q functions
- reinforcement learning example

Value function for a policy

• given a policy $\pi : S \to A$ define

$$V^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} E[r_{t}]$$

assuming action sequence chosen according to π starting at state *s*

• we want the optimal policy π^* where

$$\rho^* = \operatorname{arg\,max}_{\rho} V^{\rho}(s)$$
 for all s

we'll denote the value function for this optimal policy as $V^*(s)$

Value iteration for learning $V^*(s)$

```
initialize V(s) arbitrarily
loop until policy good enough
{
     loop for s \in S
          loop for a \in A
            Q(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V(s')
         V(s) \leftarrow \max_a Q(s,a)
     }
```

Q learning

define a new function, closely related to V^*

$$V^*(s) \leftarrow E[r(s,\pi^*(s))] + \gamma E_{s'|s,\pi^*(s)}[V^*(s')]$$
$$Q(s,a) \leftarrow E[r(s,a)] + \gamma E_{s'|s,a}[V^*(s')]$$

if agent knows Q(s, a), it can choose optimal action without knowing P(s' | s, a)

$$\pi^*(s) \leftarrow \arg\max_a Q(s,a) \qquad V^*(s) \leftarrow \max_a Q(s,a)$$

and it can learn Q(s, a) without knowing P(s' | s, a)

Q learning for deterministic worlds

for each *s*, *a* initialize table entry $\hat{Q}(s,a) \leftarrow 0$ observe current state *s* do forever select an action *a* and execute it receive immediate reward *r* observe the new state *s*' update table entry $\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$ $s \leftarrow s'$

Q learning for nondeterministic worlds

for each *s*, *a* initialize table entry $\hat{Q}(s,a) \leftarrow 0$

observe current state *s*

do forever

select an action a and execute it

receive immediate reward r

observe the new state s'

update table entry

$$\hat{Q}_n(s,a) \leftarrow (1-\alpha_n)\hat{Q}_{n-1}(s,a) + \alpha_n \left[r + \gamma \max_{a'} \hat{Q}_{n-1}(s',a')\right]$$

$$s \leftarrow s'$$

where α_n is a parameter dependent on the number of visits to the given (*s*, *a*) pair

$$\partial_n = \frac{1}{1 + \mathsf{visits}_n(s, a)}$$

Q's vs. V's

- Which action do we choose when we're in a given state?
- V's (model-based)
 - need to have a 'next state' function to generate all possible states
 - choose next state with highest V value.
- *Q*'s (model-free)
 - need only know which actions are legal
 - generally choose next state with highest Q value.

Exploration vs. Exploitation

- in order to learn about better alternatives, we shouldn't always follow the current policy (exploitation)
- sometimes, we should select random actions (exploration)
- one way to do this: select actions probabilistically according to:

$$P(a_i \mid s) = \frac{c^{\hat{Q}(s,a_i)}}{\sum_j c^{\hat{Q}(s,a_j)}}$$

where c > 0 is a constant that determines how strongly selection favors actions with higher Q values

Q learning with a table

As described so far, Q learning entails filling in a huge table

Representing *Q* functions more compactly

We can use some other function representation (e.g. a neural net) to <u>compactly</u> encode a substitute for the big table

each input unit encodes a property of the state (e.g., a sensor value)

or could have <u>one net</u> for <u>each</u> possible action

Why use a compact *Q* function?

- 1. Full *Q* table may not fit in memory for realistic problems
- 2. Can generalize across states, thereby speeding up convergence
 - i.e. one instance 'fills' many cells in the Q table

<u>Notes</u>

- 1. When generalizing across states, cannot use $\alpha=1$
- 2. Convergence proofs only apply to *Q* tables
- 3. Some work on bounding errors caused by using compact representations (e.g. Singh & Yee, *Machine Learning* 1994)

Q tables vs. Q nets

<u>Given</u>: 100 Boolean-valued features 10 possible actions

Size of Q table 10×2^{100} entries

Size of Q net (assume 100 hidden units) 100×100 + 100×10 100×100 + 100×10 weights betweenweights between

inputs and HU's

HU's and outputs

Representing *Q* functions more compactly

- we can use other regression methods to represent *Q* functions
 k-NN
 - regression trees
 - support vector regression
 - etc.

${\it Q}$ learning with function approximation

- 1. measure sensors, sense state s_0
- 2. predict $\hat{Q}_n(s_0, a)$ for each action *a*
- 3. select action *a* to take (with randomization to ensure exploration)
- 4. apply action *a* in the real world
- 5. sense new state s_1 and immediate reward r
- 6. calculate action *a*' that maximizes $\hat{Q}_n(s_1, a')$
- 7. train with new instance

$$\boldsymbol{x} = \boldsymbol{s}_0$$

$$\boldsymbol{y} \leftarrow (1 - \alpha)\hat{Q}(\boldsymbol{s}_0, a) + \alpha \left[\boldsymbol{r} + \gamma \max_{a'} \hat{Q}(\boldsymbol{s}_1, a')\right]$$

Calculate Q-value you would have put into Q-table, and use it as the training label

ML example: reinforcement learning to control an autonomous helicopter

video of Stanford University autonomous helicopter from http://heli.stanford.edu/

Stanford autonomous helicopter

sensing the helicopter's state

- orientation sensor accelerometer rate gyro magnetometer
- GPS receiver ("2cm accuracy as long as its antenna is pointing towards the sky")
- ground-based cameras

actions to control the helicopter

Experimental setup for helicopter

1. Expert pilot demonstrates the airshow several times

- 2. Learn a reward function based on desired trajectory
- 3. Learn a dynamics model
- 4. Find the optimal control policy for learned reward and dynamics model
- 5. Autonomously fly the airshow

6. Learn an improved dynamics model. Go back to step 4

Learning dynamics model $P(s_{t+1} | s_t, a)$

• state represented by helicopter's

position(x, y, z)velocity $(\dot{x}, \dot{y}, \dot{z})$ angular velocity $(\mathcal{W}_x, \mathcal{W}_y, \mathcal{W}_z)$

action represented by manipulations of 4 controls

$$(u_1, u_2, u_3, u_4)$$

- dynamics model predicts accelerations as a function of current state and actions
- accelerations are integrated to compute the predicted next state

Learning dynamics model $P(s_{t+1} | s_t, a)$

$$\begin{split} \ddot{x}^{b} &= A_{x}\dot{x}^{b} + g_{x}^{b} + w_{x}, \\ \ddot{y}^{b} &= A_{y}\dot{y}^{b} + g_{y}^{b} + D_{0} + w_{y}, \\ \ddot{z}^{b} &= A_{z}\dot{z}^{b} + g_{z}^{b} + C_{4}u_{4} + D_{4} + w_{z}, \\ \text{model} & \dot{\omega}_{x}^{b} &= B_{x}\omega_{x}^{b} + C_{1}u_{1} + D_{1} + w_{\omega_{x}}, \\ \dot{\omega}_{y}^{b} &= B_{y}\omega_{y}^{b} + C_{2}u_{2} + D_{2} + w_{\omega_{y}}, \\ \dot{\omega}_{z}^{b} &= B_{z}\omega_{z}^{b} + C_{3}u_{3} + D_{3} + w_{\omega}. \end{split}$$

- A, B, C, D represent model parameters
- g represents gravity vector
- *w*'s are random variables representing noise and unmodeled effects
- linear regression task!

Learning a desired trajectory

- repeated expert demonstrations are often suboptimal in different ways
- given a set of *M* demonstrated trajectories

$$y_{j}^{k} = \begin{bmatrix} s_{j}^{k} \\ u_{j}^{k} \end{bmatrix}$$
for $j = 0, ..., N - 1, k = 0, ..., M - 1$
action on j^{th} step of trajectory k state on j^{th} step of trajectory k

• try to infer the implicit desired trajectory

$$z_t = \begin{bmatrix} s_t^* \\ u_t^* \end{bmatrix} \quad \text{for } t = 0, \dots, H$$

Learning a desired trajectory

colored lines: demonstrations of two loops black line: inferred trajectory

Figure from Coates et al., CACM 2009

Learning reward function

- EM is used to infer desired trajectory from set of demonstrated trajectories
- The reward function is based on deviations from the desired trajectory

Finding the optimal control policy

• finding the control policy is a reinforcement learning task

$$\pi^* \leftarrow \arg \max_{\pi} E\left[\sum_t r(s_t, a) \,|\, \pi\right]$$

- RL learning methods described earlier don't quite apply because state and action spaces are both continuous
- A special type of Markov decision process in which the optimal policy can be found efficiently
 - reward is represented as a linear function of state and action vectors
 - next state is represented as a linear function of current state and action vectors
- They use an iterative approach that finds an approximate solution because the reward function used is quadratic