
Decision Tree Learning: Part 2

Yingyu Liang

Computer Sciences 760

Fall 2017

http://pages.cs.wisc.edu/~yliang/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed

by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom

Dietterich, and Pedro Domingos.

Goals for the last lecture

you should understand the following concepts

• the decision tree representation

• the standard top-down approach to learning a tree

• Occam’s razor

• entropy and information gain

• types of decision-tree splits

Goals for this lecture

you should understand the following concepts

• test sets and unbiased estimates of accuracy

• overfitting

• early stopping and pruning

• validation sets

• regression trees

• probability estimation trees

Stopping criteria

We should form a leaf when

• all of the given subset of instances are of the same class

• we’ve exhausted all of the candidate splits

Is there a reason to stop earlier, or to prune back the tree?

How can we assess the accuracy of a tree?

• can we just calculate the fraction of training instances
that are correctly classified?

• consider a problem domain in which instances are
assigned labels at random with P(Y = t) = 0.5

• how accurate would a learned decision tree be on
previously unseen instances?

• how accurate would it be on its training set?

How can we assess the accuracy of a tree?

• to get an unbiased estimate of a learned model’s
accuracy, we must use a set of instances that are held-
aside during learning

• this is called a test set

all instances

test

train

Overfitting

• consider error of model h over

• training data:

• entire distribution of data:

• model overfits the training data if there is an
alternative model such that

 errorD(h)

 errorD(h) < errorD(h ')

Hh
Hh '

Example 1: overfitting with noisy data

suppose

• the target concept is

• there is noise in some feature values

• we’re given the following training set

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t f f t … t

t f t t f … t

t f f t f … f

t f t f f … f

f t t f t … f

noisy value

21 XXY 

Example 1: overfitting with noisy data

X1

X2

T F

X3t

f

f

f

X4

t

X1

X2

T F

t f

f

correct tree tree that fits noisy training data

Example 2: overfitting with noise-free data

suppose

• the target concept is

• P(X3 = t) = 0.5 for both classes

• P(Y = t) = 0.67

• we’re given the following training set

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t t f t … t

t t t t f … t

t f f t f … f

f t f f t … f

21 XXY 

Example 2: overfitting with noise-free data

X3

T F

t f

t

training set

accuracy

test set

accuracy

100%

66% 66%

50%

• because the training set is a limited sample, there might
be (combinations of) features that are correlated with
the target concept by chance

Overfitting in decision trees

Example 3: regression using polynomial

𝑡 = sin 2𝜋𝑥 + 𝜖

Figure from Machine Learning

and Pattern Recognition, Bishop

𝑡 = sin 2𝜋𝑥 + 𝜖

Regression using

polynomial of

degree M

Example 3: regression using polynomial

𝑡 = sin 2𝜋𝑥 + 𝜖

Example 3: regression using polynomial

𝑡 = sin 2𝜋𝑥 + 𝜖

Example 3: regression using polynomial

𝑡 = sin 2𝜋𝑥 + 𝜖

Example 3: regression using polynomial

Example 3: regression using polynomial

General phenomenon

Figure from Deep Learning, Goodfellow, Bengio and Courville

Prevent overfitting

• cause: training error and expected error are different

1. there may be noise in the training data

2. training data is of limited size, resulting in difference from the true
distribution

3. larger the hypothesis class, easier to find a hypothesis that fits
the difference between the training data and the true distribution

• prevent overfitting:

1. cleaner training data help!

2. more training data help!

3. throwing away unnecessary hypotheses helps! (Occam’s Razor)

Avoiding overfitting in DT learning

two general strategies to avoid overfitting

1. early stopping: stop if further splitting not justified by
a statistical test

• Quinlan’s original approach in ID3

2. post-pruning: grow a large tree, then prune back
some nodes

• more robust to myopia of greedy tree learning

Pruning in C4.5

1. split given data into training and validation
(tuning) sets

2. grow a complete tree

3. do until further pruning is harmful

• evaluate impact on tuning-set accuracy of
pruning each node

• greedily remove the one that most improves
tuning-set accuracy

Validation sets

• a validation set (a.k.a. tuning set) is a subset of the training set
that is held aside

• not used for primary training process (e.g. tree growing)

• but used to select among models (e.g. trees pruned to
varying degrees)

all instances

testtrain

tuning

Regression trees

X5 > 10

X3

X2 > 2.1Y=5

Y=24Y=3.5

Y=3.2

• in a regression tree, leaves have functions that predict
numeric values instead of class labels

• the form of these functions depends on the method

• CART uses constants

• some methods use linear functions

X5 > 10

X3

X2 > 2.1Y=2X4+5

Y=3X4+X6

Y=3.2

Y=1

Regression trees in CART

• CART does least squares regression which tries to
minimize

target value for ith

training instance

value predicted by tree for ith training

instance (average value of y for

training instances reaching the leaf)

• at each internal node, CART chooses the split that most
reduces this quantity





||

1

2)()()ˆ(
D

i

ii yy

 
 


leaves

2)()()ˆ(
L Li

ii yy

Probability estimation trees

X5 > 10

X3

P(Y=pos) = 0.5

P(Y=neg) = 0.5

P(Y=pos) = 0.1

P(Y=neg) = 0.9

P(Y=pos) = 0.8

P(Y=neg) = 0.2

• in a PE tree, leaves estimate the probability of each
class

• could simply use training instances at a leaf to
estimate probabilities, but …

• smoothing is used to make estimates less extreme
(we’ll revisit this topic when we cover Bayes nets)

D: [3+, 3-] D: [0+, 8-]

D: [3+, 0-]

m-of-n splits

• a few DT algorithms have used m-of-n splits [Murphy & Pazzani ‘91]

• each split is constructed using a heuristic search process

• this can result in smaller, easier to comprehend trees

test is satisfied if 5 of 10

conditions are true

tree for exchange rate prediction

[Craven & Shavlik, 1997]

Searching for m-of-n splits

m-of-n splits are found via a hill-climbing search

• initial state: best 1-of-1 (ordinary) binary split

• evaluation function: information gain

• operators:

m-of-n  m-of-(n+1)

1 of { X1=t, X3=f }  1 of { X1=t, X3=f, X7=t }

m-of-n  (m+1)-of-(n+1)

1 of { X1=t, X3=f }  2 of { X1=t, X3=f, X7=t }

Lookahead

• most DT learning methods use a hill-climbing search

• a limitation of this approach is myopia: an important feature may

not appear to be informative until used in conjunction with other

features

• can potentially alleviate this limitation by using a lookahead

search [Norton ‘89; Murphy & Salzberg ‘95]

• empirically, often doesn’t improve accuracy or tree size

Choosing best split in ordinary DT learning

OrdinaryFindBestSplit(set of training instances D, set of candidate splits C)

maxgain = -∞

for each split S in C

gain = InfoGain(D, S)

if gain > maxgain

maxgain = gain

Sbest = S

return Sbest

Choosing best split with lookahead

(part 1)

LookaheadFindBestSplit(set of training instances D, set of candidate splits C)

maxgain = -∞

for each split S in C

gain = EvaluateSplit(D, C, S)

if gain > maxgain

maxgain = gain

Sbest = S

return Sbest

Choosing best split with lookahead

(part 2)

EvaluateSplit(D, C, S)

if a split on S separates instances by class (i.e.)

// no need to split further

return

else

for each outcome k of S

// see what the splits at the next level would be

Dk = subset of instances that have outcome k

Sk = OrdinaryFindBestSplit(Dk, C – S)

// return information gain that would result from this 2-level subtree

return

HD(Y | S) = 0

HD(Y)-HD(Y | S)

HD (Y)-
Dk

Dk

å HDk
(Y | S = k,Sk

æ

èç
ö

ø÷

Calculating information gain with lookahead

Humidity

Wind Temperature

D: [12-, 11+]

D: [6-, 8+] D: [6-, 3+]

D: [2-, 3+] D: [4-, 5+] D: [2-, 2+] D: [4-, 1+]

Suppose that when considering Humidity as a split, we find that Wind

and Temperature are the best features to split on at the next level

high normal

strong weak high low

We can assess value of choosing Humidity as our split by

HD (Y)-

14

23
HD(Y | Humidity =high,Wind)+

9

23
HD(Y | Humidity = low,Temperature)

æ

èç
ö

ø÷

Calculating information gain with lookahead

14

23
HD (Y | Humidity = high,Wind) +

9

23
HD (Y | Humidity = low,Temperature)

 =
5

23
HD (Y | Humidity =high,Wind = strong) +

9

23
HD (Y | Humidity =high,Wind = weak) +

4

23
HD (Y | Humidity = low,Temperature =high) +

5

23
HD (Y | Humidity = low,Temperature = low)

Using the tree from the previous slide:

Comments on decision tree learning

• widely used approach

• many variations

• provides humanly comprehensible models when

trees not too big

• insensitive to monotone transformations of numeric

features

• standard methods learn axis-parallel hypotheses*

• standard methods not suited to on-line setting*

• usually not among most accurate learning methods

* although variants exist that are exceptions to this

