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Goals for the last lecture

you should understand the following concepts

• the decision tree representation

• the standard top-down approach to learning a tree

• Occam’s razor

• entropy and information gain

• types of decision-tree splits



Goals for this lecture

you should understand the following concepts

• test sets and unbiased estimates of accuracy

• overfitting

• early stopping and pruning

• validation sets

• regression trees

• probability estimation trees



Stopping criteria

We should form a leaf when

• all of the given subset of instances are of the same class

• we’ve exhausted all of the candidate splits

Is there a reason to stop earlier, or to prune back the tree?



How can we assess the accuracy of a tree?

• can we just calculate the fraction of training instances 
that are correctly classified?

• consider a problem domain in which instances are 
assigned labels at random with P(Y = t) = 0.5

• how accurate would a learned decision tree be on 
previously unseen instances?

• how accurate would it be on its training set?



How can we assess the accuracy of a tree?

• to get an unbiased estimate of a learned model’s 
accuracy, we must use a set of instances that are held-
aside during learning

• this is called a test set

all instances

test

train



Overfitting

• consider error of model h over

• training data:

• entire distribution of data:

• model           overfits the training data if there is an 
alternative model            such that

 errorD(h)

 errorD(h) < errorD(h ')

Hh
Hh '



Example 1: overfitting with noisy data

suppose

• the target concept is 

• there is noise in some feature values

• we’re given the following training set 

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t f f t … t

t f t t f … t

t f f t f … f

t f t f f … f

f t t f t … f

noisy value

21 XXY 



Example 1: overfitting with noisy data
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f

correct tree tree that fits noisy training data



Example 2: overfitting with noise-free data

suppose

• the target concept is 

• P(X3 = t) = 0.5 for both classes

• P(Y = t) = 0.67

• we’re given the following training set 

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t t f t … t

t t t t f … t

t f f t f … f

f t f f t … f

21 XXY 



Example 2: overfitting with noise-free data

X3

T F

t f

t

training set

accuracy

test set

accuracy

100%

66% 66%

50%

• because the training set is a limited sample, there might 
be (combinations of) features that are correlated with 
the target concept by chance



Overfitting in decision trees



Example 3: regression using polynomial

𝑡 = sin 2𝜋𝑥 + 𝜖

Figure from Machine Learning 

and Pattern Recognition, Bishop



𝑡 = sin 2𝜋𝑥 + 𝜖

Regression using 

polynomial of 

degree M

Example 3: regression using polynomial
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𝑡 = sin 2𝜋𝑥 + 𝜖

Example 3: regression using polynomial



Example 3: regression using polynomial



General phenomenon

Figure from Deep Learning, Goodfellow, Bengio and Courville



Prevent overfitting

• cause: training error and expected error are different

1. there may be noise in the training data 

2. training data is of limited size, resulting in difference from the true 
distribution 

3. larger the hypothesis class, easier to find a hypothesis that fits 
the difference between the training data and the true distribution 

• prevent overfitting:

1. cleaner training data help!

2. more training data help!

3. throwing away unnecessary hypotheses helps! (Occam’s Razor)



Avoiding overfitting in DT learning

two general strategies to avoid overfitting

1. early stopping: stop if further splitting not justified by 
a statistical test

• Quinlan’s original approach in ID3

2. post-pruning: grow a large tree, then prune back 
some nodes

• more robust to myopia of greedy tree learning



Pruning in C4.5

1. split given data into training and validation
(tuning) sets

2. grow a complete tree

3. do until further pruning is harmful

• evaluate impact on tuning-set accuracy of 
pruning each node

• greedily remove the one that most improves 
tuning-set accuracy



Validation sets

• a validation set (a.k.a. tuning set) is a subset of the training set  
that is held aside

• not used for primary training process (e.g. tree growing)

• but used to select among models (e.g. trees pruned to 
varying degrees)

all instances

testtrain

tuning



Regression trees

X5 > 10

X3

X2 > 2.1Y=5

Y=24Y=3.5

Y=3.2

• in a regression tree, leaves have functions that predict 
numeric values instead of class labels

• the form of these functions depends on the method

• CART uses constants

• some methods use linear functions

X5 > 10

X3

X2 > 2.1Y=2X4+5

Y=3X4+X6

Y=3.2

Y=1



Regression trees in CART

• CART does least squares regression which tries to 
minimize

target value for ith

training instance

value predicted by tree for ith training 

instance (average value of y for 

training instances reaching the leaf)

• at each internal node, CART chooses the split that most 
reduces this quantity
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Probability estimation trees

X5 > 10

X3

P(Y=pos) = 0.5

P(Y=neg) = 0.5

P(Y=pos) = 0.1

P(Y=neg) = 0.9

P(Y=pos) = 0.8

P(Y=neg) = 0.2

• in a PE tree, leaves estimate the probability of each 
class

• could simply use training instances at a leaf to 
estimate probabilities, but …

• smoothing is used to make estimates less extreme 
(we’ll revisit this topic when we cover Bayes nets)

D: [3+, 3-] D: [0+, 8-]

D: [3+, 0-]



m-of-n splits

• a few DT algorithms have used m-of-n splits [Murphy & Pazzani ‘91]

• each split is constructed using a heuristic search process

• this can result in smaller, easier to comprehend trees

test is satisfied if 5 of 10

conditions are true

tree for exchange rate prediction 

[Craven & Shavlik, 1997]



Searching for m-of-n splits

m-of-n splits are found via a hill-climbing search

• initial state: best 1-of-1 (ordinary) binary split

• evaluation function: information gain

• operators:

m-of-n  m-of-(n+1)

1 of { X1=t, X3=f }    1 of { X1=t, X3=f, X7=t }   

m-of-n  (m+1)-of-(n+1)

1 of { X1=t, X3=f }    2 of { X1=t, X3=f, X7=t }   



Lookahead

• most DT learning methods use a hill-climbing search

• a limitation of this approach is myopia: an important feature may 

not appear to be informative until used in conjunction with other 

features

• can potentially alleviate this limitation by using a lookahead

search [Norton ‘89; Murphy & Salzberg ‘95]

• empirically, often doesn’t improve accuracy or tree size



Choosing best split in ordinary DT learning

OrdinaryFindBestSplit(set of training instances D, set of candidate splits C)

maxgain = -∞

for each split S in C

gain = InfoGain(D, S)

if gain > maxgain

maxgain = gain

Sbest = S

return Sbest



Choosing best split with lookahead

(part 1)

LookaheadFindBestSplit(set of training instances D, set of candidate splits C)

maxgain = -∞

for each split S in C

gain = EvaluateSplit(D, C, S)

if gain > maxgain

maxgain = gain

Sbest = S

return Sbest



Choosing best split with lookahead

(part 2)

EvaluateSplit(D, C, S)

if a split on S separates instances by class (i.e.                         )

// no need to split further

return

else

for each outcome k of S

// see what the splits at the next level would be

Dk = subset of instances that have outcome k

Sk = OrdinaryFindBestSplit(Dk, C – S)

// return information gain that would result from this 2-level subtree

return 

HD(Y | S) = 0

HD(Y )-HD(Y | S)

HD (Y )-
Dk

Dk

å HDk
(Y | S = k,Sk
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Calculating information gain with lookahead

Humidity

Wind Temperature

D: [12-, 11+]

D: [6-, 8+] D: [6-, 3+]

D: [2-, 3+] D: [4-, 5+] D: [2-, 2+] D: [4-, 1+]

Suppose that when considering Humidity as a split, we find that Wind 

and Temperature are the best features to split on at the next level

high normal

strong weak high low

We can assess value of choosing Humidity as our split by 

 
HD (Y )-

14

23
HD(Y |  Humidity =high,Wind)+

9

23
HD(Y |  Humidity = low,Temperature)
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Calculating information gain with lookahead

 

14

23
HD (Y |  Humidity = high,Wind) +

9

23
HD (Y |  Humidity = low,Temperature)

   =
5

23
HD (Y |  Humidity =high,Wind = strong) +

       
9

23
HD (Y |  Humidity =high,Wind = weak) +

       
4

23
HD (Y |  Humidity = low,Temperature =high) +

       
5

23
HD (Y |  Humidity = low,Temperature = low)

Using the tree from the previous slide:



Comments on decision tree learning

• widely used approach

• many variations

• provides humanly comprehensible models when 

trees not too big

• insensitive to monotone transformations of numeric 

features

• standard methods learn axis-parallel hypotheses*

• standard methods not suited to on-line setting*

• usually not among most accurate learning methods

* although variants exist that are exceptions to this


