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Goals for the lecture

• understand the concepts

• linear regression

• closed form solution for linear regression

• lasso

• RMSE, MAE, and R-square

• logistic regression for linear classification

• gradient descent for logistic regression

• multiclass logistic regression



Linear regression

• Given training data 𝑥 𝑖 , 𝑦(𝑖) : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 𝐷

• Find 𝑓𝑤 𝑥 = 𝑤𝑇𝑥 that minimizes 𝐿 𝑓𝑤 =
1

𝑚
σ𝑖=1
𝑚 𝑤𝑇𝑥(𝑖) − 𝑦(𝑖)

2

𝑙2 loss; also called mean 
squared error

Hypothesis class 𝓗



Linear regression: optimization

• Given training data 𝑥 𝑖 , 𝑦(𝑖) : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 𝐷

• Find 𝑓𝑤 𝑥 = 𝑤𝑇𝑥 that minimizes 𝐿 𝑓𝑤 =
1

𝑚
σ𝑖=1
𝑚 𝑤𝑇𝑥(𝑖) − 𝑦(𝑖)

2

• Let 𝑋 be a matrix whose 𝑖-th row is 𝑥(𝑖)
𝑇

, 𝑦 be the vector

𝑦(1), … , 𝑦(𝑚) 𝑇

𝐿 𝑓𝑤 =
1

𝑚


𝑖=1

𝑚

𝑤𝑇𝑥(𝑖) − 𝑦(𝑖)
2
=

1

𝑚
⃦𝑋𝑤 − 𝑦 ⃦2

2



Linear regression: optimization

• Set the gradient to 0 to get the minimizer

𝛻𝑤 𝐿 𝑓𝑤 = 𝛻𝑤
1

𝑚
⃦𝑋𝑤 − 𝑦 ⃦2

2 = 0

𝛻𝑤[ 𝑋𝑤 − 𝑦 𝑇(𝑋𝑤 − 𝑦)] = 0

𝛻𝑤[ 𝑤
𝑇𝑋𝑇𝑋𝑤 − 2𝑤𝑇𝑋𝑇𝑦 + 𝑦𝑇𝑦] = 0

2𝑋𝑇𝑋𝑤 − 2𝑋𝑇𝑦 = 0

w = 𝑋𝑇𝑋 −1𝑋𝑇𝑦



Linear regression: optimization

• Algebraic view of the minimizer
• If 𝑋 is invertible, just solve 𝑋𝑤 = 𝑦 and get 𝑤 = 𝑋−1𝑦

• But typically 𝑋 is a tall matrix

𝑋

𝑤
=
𝑦

𝑋𝑇𝑋 𝑤
=
𝑋𝑇𝑦

Normal equation: w = 𝑋𝑇𝑋 −1𝑋𝑇𝑦



Linear regression with bias

• Given training data 𝑥 𝑖 , 𝑦(𝑖) : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 𝐷

• Find 𝑓𝑤,𝑏 𝑥 = 𝑤𝑇𝑥 + 𝑏 to minimize the loss

• Reduce to the case without bias:
• Let 𝑤′ = 𝑤; 𝑏 , 𝑥′ = 𝑥; 1

• Then 𝑓𝑤,𝑏 𝑥 = 𝑤𝑇𝑥 + 𝑏 = 𝑤′ 𝑇(𝑥′)

Bias term



Linear regression with lasso penalty

• Given training data 𝑥 𝑖 , 𝑦(𝑖) : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 𝐷

• Find 𝑓𝑤 𝑥 = 𝑤𝑇𝑥 that minimizes

𝐿 𝑓𝑤 =
1

𝑚


𝑖=1

𝑚

𝑤𝑇𝑥(𝑖) − 𝑦(𝑖)
2
+ 𝜆 𝑤 1

lasso penalty: 𝑙1 norm of the 
parameter, encourages sparsity



• Root mean squared error (RMSE)

• Mean absolute error (MAE) – average 𝑙1 error

• R-square (R-squared)

• Historically all were computed on training data, and possibly 

adjusted after, but really should cross-validate

Evaluation Metrics



• Formulation 1:

• Formulation 2: square of Pearson correlation coefficient r 

between the label and the prediction.  

Recall for x, y:

R-square
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Linear classification

𝑤𝑇𝑥 = 0

Class 1

Class 0

𝑤

𝑤𝑇𝑥 > 0

𝑤𝑇𝑥 < 0



Linear classification: natural attempt

• Given training data 𝑥 𝑖 , 𝑦(𝑖) : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 𝐷

• Hypothesis 𝑓𝑤 𝑥 = 𝑤𝑇𝑥
• 𝑦 = 1 if 𝑤𝑇𝑥 > 0

• 𝑦 = 0 if 𝑤𝑇𝑥 < 0

• Prediction: 𝑦 = step(𝑓𝑤 𝑥 ) = step(𝑤𝑇𝑥)

Linear model 𝓗



Linear classification: natural attempt

• Given training data 𝑥 𝑖 , 𝑦(𝑖) : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 𝐷

• Find 𝑓𝑤 𝑥 = 𝑤𝑇𝑥 to minimize

𝐿 𝑓𝑤 =
1

𝑚


𝑖=1

𝑚

𝕀[step(𝑤𝑇𝑥 𝑖 ) ≠ 𝑦(𝑖)]

• Drawback: difficult to optimize
• NP-hard in the worst case

0-1 loss



Linear classification: simple approach

• Given training data 𝑥 𝑖 , 𝑦(𝑖) : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 𝐷

• Find 𝑓𝑤 𝑥 = 𝑤𝑇𝑥 that minimizes 𝐿 𝑓𝑤 =
1

𝑚
σ𝑖=1
𝑚 𝑤𝑇𝑥(𝑖) − 𝑦(𝑖)

2

Reduce to linear regression; 

ignore the fact 𝑦 ∈ {0,1}



Linear classification: simple approach

Figure borrowed from
Pattern Recognition and
Machine Learning, Bishop

Drawback: not 
robust to “outliers”



Compare the two

𝑦 = 𝑤𝑇𝑥

𝑤𝑇𝑥

𝑦

𝑦 = step(𝑤𝑇𝑥)



Between the two

• Prediction bounded in [0,1]

• Smooth

• Sigmoid: 𝜎 𝑎 =
1

1+exp(−𝑎)

Figure borrowed from Pattern Recognition and Machine Learning, Bishop



Linear classification: sigmoid prediction

• Squash the output of the linear function

Sigmoid 𝑤𝑇𝑥 = 𝜎 𝑤𝑇𝑥 =
1

1 + exp(−𝑤𝑇𝑥)

• Find 𝑤 that minimizes 𝐿 𝑓𝑤 =
1

𝑚
σ𝑖=1
𝑚 𝜎(𝑤𝑇𝑥 𝑖 ) − 𝑦(𝑖)

2



Linear classification: logistic regression

• Squash the output of the linear function

Sigmoid 𝑤𝑇𝑥 = 𝜎 𝑤𝑇𝑥 =
1

1 + exp(−𝑤𝑇𝑥)

• A better approach: Interpret as a probability

𝑃𝑤(𝑦 = 1|𝑥) = 𝜎 𝑤𝑇𝑥 =
1

1 + exp(−𝑤𝑇𝑥)

𝑃𝑤 𝑦 = 0 𝑥 = 1 − 𝑃𝑤 𝑦 = 1 𝑥 = 1 − 𝜎 𝑤𝑇𝑥



Linear classification: logistic regression

• Find 𝑓𝑤 𝑥 = 𝑤𝑇𝑥 that minimizes 𝐿 𝑓𝑤 =
1

𝑚
σ𝑖=1
𝑚 𝑤𝑇𝑥(𝑖) − 𝑦(𝑖)

2

• Find 𝑤 that minimizes

𝐿 𝑤 = −
1

𝑚


𝑖=1

𝑚

log 𝑃𝑤 𝑦(𝑖) 𝑥(𝑖)

𝐿 𝑤 = −
1

𝑚


𝑦(𝑖)=1

log𝜎(𝑤𝑇𝑥(𝑖)) −
1

𝑚


𝑦(𝑖)=0

log[1 − 𝜎 𝑤𝑇𝑥(𝑖) ]

Logistic regression:

MLE with sigmoid



Linear classification: logistic regression

• Given training data 𝑥 𝑖 , 𝑦(𝑖) : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 𝐷

• Find 𝑤 that minimizes

𝐿 𝑤 = −
1

𝑚


𝑦(𝑖)=1

log𝜎(𝑤𝑇𝑥(𝑖)) −
1

𝑚


𝑦(𝑖)=0

log[1 − 𝜎 𝑤𝑇𝑥(𝑖) ]

No close form solution;
Need to use gradient descent



Properties of sigmoid function

• Bounded

𝜎 𝑎 =
1

1 + exp(−𝑎)
∈ (0,1)

• Symmetric

1 − 𝜎 𝑎 =
exp −𝑎

1 + exp −𝑎
=

1

exp 𝑎 + 1
= 𝜎(−𝑎)

• Gradient

𝜎′(𝑎) =
exp −𝑎

1 + exp −𝑎 2
= 𝜎(𝑎)(1 − 𝜎 𝑎 )



Review: binary logistic regression

• Sigmoid

𝜎 𝑤𝑇𝑥 + 𝑏 =
1

1 + exp(−(𝑤𝑇𝑥 + 𝑏))

• Interpret as conditional probability

𝑝𝑤 𝑦 = 1 𝑥 = 𝜎 𝑤𝑇𝑥 + 𝑏

𝑝𝑤 𝑦 = 0 𝑥 = 1 − 𝑝𝑤 𝑦 = 1 𝑥 = 1 − 𝜎 𝑤𝑇𝑥 + 𝑏

• How to extend to multiclass?



Review: binary logistic regression

• Suppose we model the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 and 
class probabilities 𝑝 𝑦 = 𝑖

• Conditional probability by Bayesian rule:

𝑝 𝑦 = 1|𝑥 =
𝑝 𝑥|𝑦 = 1 𝑝(𝑦 = 1)

𝑝 𝑥|𝑦 = 1 𝑝 𝑦 = 1 + 𝑝 𝑥|𝑦 = 2 𝑝(𝑦 = 2)
=

1

1 + exp(−𝑎)
= 𝜎(𝑎)

where we define 

𝑎 ≔ ln
𝑝 𝑥|𝑦 = 1 𝑝(𝑦 = 1)

𝑝 𝑥|𝑦 = 2 𝑝(𝑦 = 2)
= ln

𝑝 𝑦 = 1|𝑥

𝑝 𝑦 = 2|𝑥



Review: binary logistic regression

• Suppose we model the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 and 
class probabilities 𝑝 𝑦 = 𝑖

• 𝑝 𝑦 = 1|𝑥 = 𝜎 𝑎 = 𝜎(𝑤𝑇𝑥 + 𝑏) is equivalent to setting log odds
to be linear:

𝑎 = ln
𝑝 𝑦 = 1|𝑥

𝑝 𝑦 = 2|𝑥
= 𝑤𝑇𝑥 + 𝑏

• Why linear log odds?



Review: binary logistic regression

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 is normal

𝑝 𝑥 𝑦 = 𝑖 = 𝑁 𝑥|𝜇𝑖 , 𝐼 =
1

2𝜋 𝑑/2
exp{−

1

2
𝑥 − 𝜇𝑖

2
}

• log odd is

𝑎 = ln
𝑝 𝑥|𝑦 = 1 𝑝(𝑦 = 1)

𝑝 𝑥|𝑦 = 2 𝑝(𝑦 = 2)
= 𝑤𝑇𝑥 + 𝑏

where 

𝑤 = 𝜇1 − 𝜇2, 𝑏 = −
1

2
𝜇1
𝑇𝜇1 +

1

2
𝜇2
𝑇𝜇2 + ln

𝑝(𝑦 = 1)

𝑝(𝑦 = 2)



Multiclass logistic regression

• Suppose we model the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 and 
class probabilities 𝑝 𝑦 = 𝑖

• Conditional probability by Bayesian rule:

𝑝 𝑦 = 𝑖|𝑥 =
𝑝 𝑥|𝑦 = 𝑖 𝑝(𝑦 = 𝑖)

σ𝑗 𝑝 𝑥|𝑦 = 𝑗 𝑝(𝑦 = 𝑗)
=

exp(𝑎𝑖)

σ𝑗 exp(𝑎𝑗)

where we define 
𝑎𝑖 ≔ ln [𝑝 𝑥 𝑦 = 𝑖 𝑝 𝑦 = 𝑖 ]



Multiclass logistic regression

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 is normal

𝑝 𝑥 𝑦 = 𝑖 = 𝑁 𝑥|𝜇𝑖 , 𝐼 =
1

2𝜋 𝑑/2
exp{−

1

2
𝑥 − 𝜇𝑖

2
}

• Then

𝑎𝑖 ≔ ln 𝑝 𝑥 𝑦 = 𝑖 𝑝 𝑦 = 𝑖 = −
1

2
𝑥𝑇𝑥 + 𝑤𝑖

𝑇

𝑥 + 𝑏𝑖

where 

𝑤𝑖 = 𝜇𝑖 , 𝑏𝑖 = −
1

2
𝜇𝑖
𝑇𝜇𝑖 + ln 𝑝 𝑦 = 𝑖 + ln

1

2𝜋 𝑑/2



Multiclass logistic regression

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 is normal

𝑝 𝑥 𝑦 = 𝑖 = 𝑁 𝑥|𝜇𝑖 , 𝐼 =
1

2𝜋 𝑑/2
exp{−

1

2
𝑥 − 𝜇𝑖

2
}

• Cancel out −
1

2
𝑥𝑇𝑥, we have

𝑝 𝑦 = 𝑖|𝑥 =
exp(𝑎𝑖)

σ𝑗 exp(𝑎𝑗)
, 𝑎𝑖 ≔ 𝑤𝑖 𝑇

𝑥 + 𝑏𝑖

where 

𝑤𝑖 = 𝜇𝑖 , 𝑏𝑖 = −
1

2
𝜇𝑖
𝑇𝜇𝑖 + ln 𝑝 𝑦 = 𝑖 + ln

1

2𝜋 𝑑/2



Multiclass logistic regression: conclusion

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 is normal

𝑝 𝑥 𝑦 = 𝑖 = 𝑁 𝑥|𝜇𝑖 , 𝐼 =
1

2𝜋 𝑑/2
exp{−

1

2
𝑥 − 𝜇𝑖

2
}

• Then

𝑝 𝑦 = 𝑖|𝑥 =
exp( 𝑤𝑖 𝑇

𝑥 + 𝑏𝑖)

σ𝑗 exp( 𝑤𝑗 𝑇𝑥 + 𝑏𝑗)

which is the hypothesis class for multiclass logistic regression

• It is softmax on linear transformation; it can be used to derive the 
negative log-likelihood loss (cross entropy)



Softmax

• A way to squash 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑖 , … ) into probability vector 𝑝

softmax 𝑎 =
exp(𝑎1)

σ𝑗 exp(𝑎𝑗)
,
exp(𝑎2)

σ𝑗 exp(𝑎𝑗)
, … ,

exp 𝑎𝑖

σ𝑗 exp 𝑎𝑗
, …

• Behave like max: when 𝑎𝑖 ≫ 𝑎𝑗 ∀𝑗 ≠ 𝑖 , 𝑝𝑖 ≅ 1, 𝑝𝑗 ≅ 0



Cross entropy for conditional distribution

• Let 𝑝data(𝑦|𝑥) denote the empirical distribution of the data

• Negative log-likelihood 

−
1

𝑚
σ𝑖=1
𝑚 log 𝑝 𝑦 = 𝑦(𝑖) 𝑥(𝑖) = −E𝑝data(𝑦|𝑥) log 𝑝(𝑦|𝑥)

is the cross entropy between 𝑝data and the model output 𝑝

• Information theory viewpoint: KL divergence

𝐷(𝑝data| 𝑝 = E𝑝data[log
𝑝data

𝑝
] = E𝑝data [log 𝑝data] − E𝑝data[log 𝑝]

Entropy; constant Cross entropy



Cross entropy for full distribution

• Let 𝑝data(𝑥, 𝑦) denote the empirical distribution of the data

• Negative log-likelihood 

−
1

𝑚
σ𝑖=1
𝑚 log 𝑝(𝑥 𝑖 , 𝑦(𝑖)) = −E𝑝data(𝑥,𝑦) log 𝑝(𝑥, 𝑦)

is the cross entropy between 𝑝data and the model output 𝑝


