Machine Learning: Course Overview

CS 760@UW-Madison

Class enrollment

- typically the class was limited to 30
- we've allowed ~70 to register
- the waiting list full
- unfortunately, many on the waiting list will not be able to enroll
- but CS760 will be offered in the Spring semester!

 Yingyu Liang email: yliang@cs.wisc.edu office hours: 3-4pm, Monday office: 6393 Computer Sciences

Jiewei Hong email: jhong58@wisc.edu office hours: 1-2pm Thursday, 1-2pm Friday office: CS 5364

- we'll have ~30 lectures in all, just like a standard TR class
- will push the lectures forward (finish early, leave time for projects and review)
- see the schedule on the course website: http://pages.cs.wisc.edu/~yliang/cs760_fall18

- a variety of learning settings: supervised learning, unsupervised learning, reinforcement learning, active learning, etc.
- a broad toolbox of machine-learning methods: decision trees, nearest neighbor, neural nets, Bayesian networks, SVMs, etc
- some underlying theory: bias-variance tradeoff, PAC learning, mistake-bound theory, etc.
- experimental methodology for evaluating learning systems: cross validation, ROC and PR curves, hypothesis testing, etc.

Two major goals

- 1. Understand what a learning system should do
- 2. Understand how (and how well) existing systems work

Course requirements

- 5 homework assignments: 65%
 - programming
 - computational experiments (e.g. measure the effect of varying parameter x in algorithm y)
 - some written exercises
- final project: 35%
 - project group: 3-5 people

Expected background

- CS 540 (Intro to Artificial Intelligence) or equivalent
- good programming skills
- probability
- linear algebra
- calculus, including partial derivatives

Programming languages

for the programming assignments, you can use

C C++ Java Perl Python R

Matlab

• programs must be callable from the command line and *must run on the CS lab machines (this is where they will be tested during grading!)*

Course readings

Recommend to get <u>one</u> of the following books

- Machine Learning. T. Mitchell. McGraw Hill, 1997.
- Pattern Recognition and Machine Learning. C. Bishop. Springer, 2011.
- Machine Learning: A Probabilistic Perspective. K. Murphy. MIT Press, 2012.
- Understanding Machine Learning: From Theory to Algorithms. S. Shalev-Shwartz, S. Ben-David. Cambridge University press, 2014.

Course readings

- the books can be found online or at Wendt Commons Library
- additional readings will come from online articles, surveys, and chapters
- will be posted on course website

What is machine learning?

- the study of algorithms that improve their performance *P* at some task *T* with experience *E*
- to have a well defined learning task, we must specify: < *P*, *T*, *E* >

ML example: spam filtering

O Delete

9/4/12 8:42 AM

04 September 2012

 Read Nature's news online Subscribe to Nature

Forward

Seply

Other Actions

Archive

🔸 Reply 🗟 Reply List 🔹 ➡ Forward 📓 Archive 🛕 Junk 🛇 Dele

🕰 Junk

O Delet

8/29/12 6:52 A

Other Action

6/25/12 4:48

Other Actic

ML example: spam filtering

- T: given new mail message, classify as spam vs. other
- P: minimize misclassification costs
- *E* : previously classified (filed) messages

ML example: predictive text input

ML example: predictive text input

- *T* : given (partially) typed word, predict the word the user intended to type
- *P* : minimize misclassifications
- E: words previously typed by the user
 (+ lexicon of common words + knowledge of keyboard layout)

domain knowledge

ML example: Netflix Prize

Our best guess for Mark: ★★★★☆☆

ML example: Netflix

- *T* : given a user/movie pair, predict the user's rating (1-5 stars) of the movie
- *P* : minimize difference between predicted and actual rating
- *E* : histories of previously rated movies (user/movie/rating triples)

ML example: autonomous helicopter

video of Stanford University autonomous helicopter from http://heli.stanford.edu/

ML example: autonomous helicopter

- *T* : given a measurement of the helicopter's current state (orientation sensor, GPS, cameras), select an adjustment of the controls
- *P* : maximize reward (intended trajectory + penalty function)
- *E* : state, action and reward triples from previous demonstration flights

Reading assignment

- for Friday, read
 - Chapter 1 of Mitchell or Chapter 1 of Murphy
 - article by Dietterich on course website
 - article by Jordan and Mitchell on course website
- course website:

http://pages.cs.wisc.edu/~yliang/cs760_fall18/

HW1: Background test

- posted on course website; due in two weeks (Sep 19)
- will set up how to submit the solutions on Canvas
- contains: minimum and medium tests
- if pass both: in good shape
- if pass minimum but not medium: can still take but expect to fill in background
- if fail both: suggest to fill in background before taking the course

Minimum background test

- 80 pts in total; pass: 48pts
- linear algebra: 20 pts
- probability: 20 pts
- calculus: 20 pts
- big-O notations: 20 pts

Minimum test example

$$X = \begin{pmatrix} 9 & 8 \\ 7 & 6 \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} 9 \\ 8 \end{pmatrix} \qquad \mathbf{z} = \begin{pmatrix} 7 \\ 6 \end{pmatrix}$$

- 1. What is the inner product of the vectors \mathbf{y} and \mathbf{z} ? (this is also sometimes called the *dot product*, and is sometimes written as $\mathbf{y}^T \mathbf{z}$)
- 2. What is the product Xy?
- 3. Is X invertible? If so, give the inverse, and if no, explain why not.
- 4. What is the rank of X?

- 1. If $y = 4x^3 x^2 + 7$ then what is the derivative of y with respect to x?
- 2. If $y = \tan(z)x^{6z} \ln(\frac{7x+z}{x^4})$, what is the partial derivative of y with respect to x?

Medium background test

- 20 pts in total; pass: 12 pts
- algorithm: 5 pts
- probability: 5 pts
- linear algebra: 5 pts
- programming: 5 pts

Match the distribution name to its probability density / mass function. Below, $|\mathbf{x}| = k$. (f) $f(\boldsymbol{x};\boldsymbol{\Sigma},\boldsymbol{\mu}) = \frac{1}{\sqrt{(2\pi)^k \boldsymbol{\Sigma}}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$ (g) $f(x; n, \alpha) = {n \choose x} \alpha^x (1 - \alpha)^{n-x}$ for $x \in \{0, \dots, n\}; 0$ otherwise (h) $f(x; b, \mu) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)$ (a) Laplace (i) $f(\boldsymbol{x}; n, \boldsymbol{\alpha}) = \frac{n!}{\prod_{i=1}^{k} \alpha_{i}^{x_{i}}} \prod_{i=1}^{k} \alpha_{i}^{x_{i}}$ for $x_{i} \in \{0, ..., n\}$ and (b) Multinomial (c) Poisson $\sum_{i=1}^{k} x_i = n; 0$ otherwise (d) Dirichlet (j) $f(x; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$ for $x \in (0, +\infty)$; 0 oth-(e) Gamma erwise (k) $f(\boldsymbol{x}; \boldsymbol{\alpha}) = \frac{\Gamma(\sum_{i=1}^{k} \alpha_i)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \prod_{i=1}^{k} x_i^{\alpha_i - 1}$ for $x_i \in (0, 1)$ and $\sum_{i=1}^{k} x_i = 1; 0$ otherwise (1) $f(x; \lambda) = \lambda^x \frac{e^{-\lambda}}{x!}$ for all $x \in Z^+$; 0 otherwise

Draw the regions corresponding to vectors $\mathbf{x} \in \mathbb{R}^2$ with the following norms:

- 1. $||\mathbf{x}||_1 \le 1$ (Recall that $||\mathbf{x}||_1 = \sum_i |x_i|$)
- 2. $||\mathbf{x}||_2 \le 1$ (Recall that $||\mathbf{x}||_2 = \sqrt{\sum_i x_i^2}$)
- 3. $||\mathbf{x}||_{\infty} \leq 1$ (Recall that $||\mathbf{x}||_{\infty} = \max_{i} |x_{i}|$)

THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.