
Neural Network Part 4:
Recurrent Neural Networks

CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts

• sequential data

• computational graph

• recurrent neural networks (RNN) and the

advantage

• training recurrent neural networks

• bidirectional RNNs

• encoder-decoder RNNs

2

Introduction

Recurrent neural networks

• Dates back to (Rumelhart et al., 1986)

• A family of neural networks for handling sequential data, which
involves variable length inputs or outputs

• Especially, for natural language processing (NLP)

Sequential data

• Each data point: A sequence of vectors 𝑥(𝑡), for 1 ≤ 𝑡 ≤ 𝜏

• Batch data: many sequences with different lengths 𝜏

• Label: can be a scalar, a vector, or even a sequence

• Example
• Sentiment analysis

• Machine translation

Example: machine translation

Figure from: devblogs.nvidia.com

More complicated sequential data

• Data point: two dimensional sequences like images

• Label: different type of sequences like text sentences

• Example: image captioning

Image captioning

Figure from the paper “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”,

by Justin Johnson, Andrej Karpathy, Li Fei-Fei

Computational graphs

A typical dynamic system

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 ; 𝜃)

Figure from Deep Learning,

Goodfellow, Bengio and Courville

A system driven by external data

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 , 𝑥(𝑡+1); 𝜃)

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Compact view

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 , 𝑥(𝑡+1); 𝜃)

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Compact view

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 , 𝑥(𝑡+1); 𝜃)

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Key: the same 𝑓 and

𝜃 for all time steps

square: one step time delay

Recurrent neural networks (RNN)

Recurrent neural networks

• Use the same computational function and parameters across
different time steps of the sequence

• Each time step: takes the input entry and the previous hidden
state to compute the output entry

• Loss: typically computed at every time step

Recurrent neural networks

Figure from Deep Learning, by Goodfellow, Bengio and

Courville

Label

Loss

Output

State

Input

Recurrent neural networks

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Math formula:

Advantage

• Hidden state: a lossy summary of the past

• Shared functions and parameters: greatly reduce the capacity
and good for generalization in learning

• Explicitly use the prior knowledge that the sequential data can
be processed by in the same way at different time step (e.g.,
NLP)

Advantage

• Hidden state: a lossy summary of the past

• Shared functions and parameters: greatly reduce the capacity
and good for generalization in learning

• Explicitly use the prior knowledge that the sequential data can
be processed by in the same way at different time step (e.g.,
NLP)

• Yet still powerful (actually universal): any function computable
by a Turing machine can be computed by such a recurrent
network of a finite size (see, e.g., Siegelmann and Sontag
(1995))

Training RNN

• Principle: unfold the computational graph, and use
backpropagation

• Called back-propagation through time (BPTT) algorithm

• Can then apply any general-purpose gradient-based techniques

Training RNN

• Principle: unfold the computational graph, and use
backpropagation

• Called back-propagation through time (BPTT) algorithm

• Can then apply any general-purpose gradient-based techniques

• Conceptually: first compute the gradients of the internal nodes,
then compute the gradients of the parameters

Recurrent neural networks

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Math formula:

Recurrent neural networks

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Gradient at 𝐿(𝑡): (total

loss is sum of those at

different time steps)

Recurrent neural networks

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Gradient at 𝑜(𝑡):

Recurrent neural networks

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Gradient at 𝑠(𝜏):

Recurrent neural networks

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Gradient at 𝑠(𝑡):

Recurrent neural networks

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Gradient at parameter 𝑉:

• What happens to the magnitude of
the gradients as we backpropagate
through many layers?

– If the weights are small, the
gradients shrink exponentially.

– If the weights are big the gradients
grow exponentially.

• Typical feed-forward neural nets
can cope with these exponential
effects because they only have a
few hidden layers.

• In an RNN trained on long
sequences (e.g. 100 time steps)
the gradients can easily explode or
vanish.

– We can avoid this by initializing the
weights very carefully.

• Even with good initial weights, its
very hard to detect that the current
target output depends on an input
from many time-steps ago.

– So RNNs have difficulty dealing with
long-range dependencies.

The problem of exploding/vanishing gradient

The Popular LSTM Cell

it
o
t

ft

Input Gate Output Gate

Forget Gate

ht

29

xt ht-1

Cell

ct-1

ct = ft Ä ct-1 +

it Ä tanhW
xt

ht-1

æ

èç
ö

ø÷

xt ht-1 xt ht-1

xt

ht-1

W

Wi
Wo

Wf

ft = s W f

xt

ht-1

æ

èç
ö

ø÷
+ b f

æ

èç

ö

ø÷

ht = ot Ä tanhct

Similarly for it, ot

* Dashed line indicates time-lag

Some Other Variants of RNN

RNN

• Use the same computational function and parameters across
different time steps of the sequence

• Each time step: takes the input entry and the previous hidden
state to compute the output entry

• Loss: typically computed every time step

• Many variants
• Information about the past can be in many other forms

• Only output at the end of the sequence

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Example: use the output at

the previous step

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Example: only output at the

end

Bidirectional RNNs

• Many applications: output at time 𝑡 may depend on the whole
input sequence

• Example in speech recognition: correct interpretation of the
current sound may depend on the next few phonemes,
potentially even the next few words

• Bidirectional RNNs are introduced to address this

BiRNNs

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Encoder-decoder RNNs

• RNNs: can map sequence to one vector; or to sequence of
same length

• What about mapping sequence to sequence of different length?

• Example: speech recognition, machine translation, question
answering, etc

Figure from Deep Learning,

Goodfellow, Bengio and Courville

THANK YOU
Some of the slides in these lectures have been adapted/borrowed

from materials developed by Mark Craven, David Page, Jude
Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan,

Tom Dietterich, Pedro Domingos, and Geoffrey Hinton.

