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Goals for the lecture

you should understand the following concepts

• sequential data

• computational graph

• recurrent neural networks (RNN) and  the 

advantage

• training recurrent neural networks

• bidirectional RNNs

• encoder-decoder RNNs
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Introduction



Recurrent neural networks

• Dates back to (Rumelhart et al., 1986) 

• A family of neural networks for handling sequential data, which 
involves variable length inputs or outputs

• Especially, for natural language processing (NLP)



Sequential data 

• Each data point: A sequence of vectors 𝑥(𝑡), for 1 ≤ 𝑡 ≤ 𝜏

• Batch data: many sequences with different lengths 𝜏

• Label: can be a scalar, a vector, or even a sequence 

• Example
• Sentiment analysis

• Machine translation



Example: machine translation

Figure from: devblogs.nvidia.com



More complicated sequential data 

• Data point: two dimensional sequences like images

• Label: different type of sequences like text sentences

• Example: image captioning



Image captioning

Figure from the paper “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, 

by Justin Johnson, Andrej Karpathy, Li Fei-Fei



Computational graphs



A typical dynamic system 

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 ; 𝜃)

Figure from Deep Learning, 

Goodfellow, Bengio and Courville



A system driven by external data

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 , 𝑥(𝑡+1); 𝜃)

Figure from Deep Learning, 

Goodfellow, Bengio and Courville



Compact view

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 , 𝑥(𝑡+1); 𝜃)

Figure from Deep Learning, 

Goodfellow, Bengio and Courville



Compact view

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 , 𝑥(𝑡+1); 𝜃)

Figure from Deep Learning, 

Goodfellow, Bengio and Courville

Key: the same 𝑓 and 

𝜃 for all time steps 

square: one step time delay



Recurrent neural networks (RNN)



Recurrent neural networks

• Use the same computational function and parameters across 
different time steps of the sequence

• Each time step: takes the input entry and the previous hidden 
state to compute the output entry

• Loss: typically computed at every time step



Recurrent neural networks

Figure from Deep Learning, by Goodfellow, Bengio and 

Courville
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Recurrent neural networks

Figure from Deep Learning, 

Goodfellow, Bengio and Courville

Math formula:



Advantage

• Hidden state: a lossy summary of the past

• Shared functions and parameters: greatly reduce the capacity
and good for generalization in learning

• Explicitly use the prior knowledge that the sequential data can 
be processed by in the same way at different time step (e.g., 
NLP)



Advantage

• Hidden state: a lossy summary of the past

• Shared functions and parameters: greatly reduce the capacity 
and good for generalization in learning

• Explicitly use the prior knowledge that the sequential data can 
be processed by in the same way at different time step (e.g., 
NLP)

• Yet still powerful (actually universal): any function computable 
by a Turing machine can be computed by such a recurrent 
network of a finite size (see, e.g., Siegelmann and Sontag 
(1995))



Training RNN

• Principle: unfold the computational graph, and use 
backpropagation

• Called back-propagation through time (BPTT) algorithm

• Can then apply any general-purpose gradient-based techniques



Training RNN

• Principle: unfold the computational graph, and use 
backpropagation

• Called back-propagation through time (BPTT) algorithm

• Can then apply any general-purpose gradient-based techniques

• Conceptually: first compute the gradients of the internal nodes, 
then compute the gradients of the parameters



Recurrent neural networks

Figure from Deep Learning, 

Goodfellow, Bengio and Courville

Math formula:



Recurrent neural networks

Figure from Deep Learning, 

Goodfellow, Bengio and Courville

Gradient at 𝐿(𝑡): (total 

loss is sum of those at 

different time steps)



Recurrent neural networks

Figure from Deep Learning, 

Goodfellow, Bengio and Courville

Gradient at 𝑜(𝑡):



Recurrent neural networks

Figure from Deep Learning, 

Goodfellow, Bengio and Courville

Gradient at 𝑠(𝜏):



Recurrent neural networks

Figure from Deep Learning, 

Goodfellow, Bengio and Courville

Gradient at 𝑠(𝑡):



Recurrent neural networks

Figure from Deep Learning, 

Goodfellow, Bengio and Courville

Gradient at parameter 𝑉:



• What happens to the magnitude of 
the gradients as we backpropagate
through many layers? 

– If the weights are  small, the 
gradients shrink exponentially.

– If the weights are big the gradients 
grow exponentially.

• Typical feed-forward neural nets 
can cope with these exponential 
effects because they only have a 
few hidden layers.

• In an RNN trained on long 
sequences (e.g. 100 time steps) 
the gradients can easily explode or 
vanish.

– We can avoid this by initializing the 
weights very carefully.

• Even with good initial weights, its 
very hard to detect that the current 
target output depends on an input 
from many time-steps ago.

– So RNNs have difficulty dealing with 
long-range dependencies.

The problem of exploding/vanishing gradient



The Popular LSTM Cell
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Some Other Variants of RNN



RNN

• Use the same computational function and parameters across 
different time steps of the sequence

• Each time step: takes the input entry and the previous hidden 
state to compute the output entry

• Loss: typically computed every time step

• Many variants
• Information about the past can be in many other forms

• Only output at the end of the sequence 



Figure from Deep Learning, 

Goodfellow, Bengio and Courville

Example: use the output at 

the previous step



Figure from Deep Learning, 

Goodfellow, Bengio and Courville

Example: only output at the 

end



Bidirectional RNNs

• Many applications: output at time 𝑡 may depend on the whole 
input sequence

• Example in speech recognition: correct interpretation of the 
current sound may depend on the next few phonemes, 
potentially even  the next few words

• Bidirectional RNNs are introduced to address this



BiRNNs

Figure from Deep Learning, 

Goodfellow, Bengio and Courville



Encoder-decoder RNNs

• RNNs: can map sequence to one vector; or to sequence of 
same length

• What about mapping sequence to sequence of different length?

• Example: speech recognition, machine translation, question 
answering, etc



Figure from Deep Learning, 

Goodfellow, Bengio and Courville



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, 

Tom Dietterich, Pedro Domingos, and Geoffrey Hinton.


