
Neural Network Part 5:
Unsupervised Models

CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts

• autoencoder

• restricted Boltzmann machine (RBM)

• Nash equilibrium

• minimax game

• generative adversarial network (GAN)

2

Autoencoder

Autoencoder

• Neural networks trained to attempt to copy its input to its output

• Contain two parts:
• Encoder: map the input to a hidden representation

• Decoder: map the hidden representation to the output

Autoencoder

ℎ

𝑥 𝑟

Hidden representation (the code)

ReconstructionInput

Autoencoder

ℎ

𝑥 𝑟

Decoder 𝑔(⋅)Encoder 𝑓(⋅)

ℎ = 𝑓 𝑥 , 𝑟 = 𝑔 ℎ = 𝑔(𝑓 𝑥)

Why want to copy input to output

• Not really care about copying

• Interesting case: NOT able to copy exactly but strive to do so

• Autoencoder forced to select which aspects to preserve and
thus hopefully can learn useful properties of the data

• Historical note: goes back to (LeCun, 1987; Bourlard and Kamp,
1988; Hinton and Zemel, 1994).

Undercomplete autoencoder

• Constrain the code to have smaller dimension than the input

• Training: minimize a loss function

𝐿 𝑥, 𝑟 = 𝐿(𝑥, 𝑔 𝑓 𝑥)

ℎ𝑥 𝑟

Undercomplete autoencoder

• Constrain the code to have smaller dimension than the input

• Training: minimize a loss function

𝐿 𝑥, 𝑟 = 𝐿(𝑥, 𝑔 𝑓 𝑥)

• Special case: 𝑓, 𝑔 linear, 𝐿 mean square error

• Reduces to Principal Component Analysis

Undercomplete autoencoder

• What about nonlinear encoder and decoder?

• Capacity should not be too large

• Suppose given data 𝑥1, 𝑥2, … , 𝑥𝑛
• Encoder maps 𝑥𝑖 to 𝑖

• Decoder maps 𝑖 to 𝑥𝑖

• One dim ℎ suffices for perfect reconstruction

Regularization

• Typically NOT
• Keeping the encoder/decoder shallow or

• Using small code size

• Regularized autoencoders: add regularization term that
encourages the model to have other properties

• Sparsity of the representation (sparse autoencoder)

• Robustness to noise or to missing inputs (denoising autoencoder)

Sparse autoencoder

• Constrain the code to have sparsity

• Training: minimize a loss function
𝐿𝑅 = 𝐿(𝑥, 𝑔 𝑓 𝑥) + 𝑅(ℎ)

ℎ𝑥 𝑟

Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝(ℎ, 𝑥)

• MLE on 𝑥

log 𝑝(𝑥) = log

ℎ′

𝑝(ℎ′, 𝑥)

• Hard to sum over ℎ′

Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝(ℎ, 𝑥)

• MLE on 𝑥

max log 𝑝(𝑥) = max log

ℎ′

𝑝(ℎ′, 𝑥)

• Approximation: suppose ℎ = 𝑓(𝑥) gives the most likely hidden
representation, and σℎ′ 𝑝(ℎ

′, 𝑥) can be approximated by 𝑝(ℎ, 𝑥)

Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝(ℎ, 𝑥)

• Approximate MLE on 𝑥, ℎ = 𝑓(𝑥)

max log 𝑝(ℎ, 𝑥) = max log 𝑝(𝑥|ℎ) + log 𝑝(ℎ)

Regularization

Loss

Sparse autoencoder

• Constrain the code to have sparsity

• Laplacian prior: 𝑝 ℎ =
𝜆

2
exp(−

𝜆

2
ℎ 1)

• Training: minimize a loss function

𝐿𝑅 = 𝐿(𝑥, 𝑔 𝑓 𝑥) + 𝜆 ℎ 1

Denoising autoencoder

• Traditional autoencoder: encourage to learn 𝑔 𝑓 ⋅ to be
identity

• Denoising : minimize a loss function

𝐿 𝑥, 𝑟 = 𝐿(𝑥, 𝑔 𝑓 𝑥)

where 𝑥 is 𝑥 + 𝑛𝑜𝑖𝑠𝑒

Boltzmann Machine

Boltzmann machine

• Introduced by Ackley et al. (1985)

• General “connectionist” approach to learning arbitrary
probability distributions over binary vectors

• Special case of energy model: 𝑝 𝑥 =
exp(−𝐸 𝑥)

𝑍

Boltzmann machine

• Energy model:

𝑝 𝑥 =
exp(−𝐸 𝑥)

𝑍
• Boltzmann machine: special case of energy model with

𝐸 𝑥 = −𝑥𝑇𝑈𝑥 − 𝑏𝑇𝑥

where 𝑈 is the weight matrix and 𝑏 is the bias parameter

Boltzmann machine with latent variables

• Some variables are not observed

𝑥 = 𝑥𝑣, 𝑥ℎ , 𝑥𝑣 visible, 𝑥ℎ hidden

𝐸 𝑥 = −𝑥𝑣
𝑇𝑅𝑥𝑣 − 𝑥𝑣

𝑇𝑊𝑥ℎ − 𝑥ℎ
𝑇𝑆𝑥ℎ − 𝑏𝑇𝑥𝑣 − 𝑐𝑇𝑥ℎ

• Universal approximator of probability mass functions

Maximum likelihood

• Suppose we are given data 𝑋 = 𝑥𝑣
1, 𝑥𝑣

2, … , 𝑥𝑣
𝑛

• Maximum likelihood is to maximize

log 𝑝 𝑋 =

𝑖

log 𝑝(𝑥𝑣
𝑖)

where

𝑝 𝑥𝑣 =

𝑥ℎ

𝑝(𝑥𝑣, 𝑥ℎ) =

𝑥ℎ

1

𝑍
exp(−𝐸(𝑥𝑣, 𝑥ℎ))

• 𝑍 = σexp(−𝐸(𝑥𝑣, 𝑥ℎ)): partition function, difficult to compute

Restricted Boltzmann machine

• Invented under the name harmonium (Smolensky, 1986)

• Popularized by Hinton and collaborators to Restricted
Boltzmann machine

Restricted Boltzmann machine

• Special case of Boltzmann machine with latent variables:

𝑝 𝑣, ℎ =
exp(−𝐸 𝑣, ℎ)

𝑍
where the energy function is

𝐸 𝑣, ℎ = −𝑣𝑇𝑊ℎ − 𝑏𝑇𝑣 − 𝑐𝑇ℎ

with the weight matrix 𝑊 and the bias 𝑏, 𝑐

• Partition function

𝑍 =

𝑣

ℎ

exp(−𝐸 𝑣, ℎ)

Restricted Boltzmann machine

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Restricted Boltzmann machine

• Conditional distribution is factorial

𝑝 ℎ|𝑣 =
𝑝(𝑣, ℎ)

𝑝(𝑣)
=ෑ

𝑗

𝑝(ℎ𝑗|𝑣)

and
𝑝 ℎ𝑗 = 1|𝑣 = 𝜎 𝑐𝑗 + 𝑣𝑇𝑊:,𝑗

is logistic function

Restricted Boltzmann machine

• Similarly,

𝑝 𝑣|ℎ =
𝑝(𝑣, ℎ)

𝑝(ℎ)
=ෑ

𝑖

𝑝(𝑣𝑖|ℎ)

and
𝑝 𝑣𝑖 = 1|ℎ = 𝜎 𝑏𝑖 +𝑊𝑖,:ℎ

is logistic function

Generative Adversarial
Networks (GAN)

See Ian Goodfellow’s tutorial slides:
http://www.iangoodfellow.com/slides/2018-06-22-gan_tutorial.pdf

THANK YOU
Some of the slides in these lectures have been adapted/borrowed

from materials developed by Mark Craven, David Page, Jude
Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan,

Tom Dietterich, Pedro Domingos, Geoffrey Hinton, and Ian
Goodfellow.

