Neural Network Part5:
Unsupervised Models
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Goals for the lecture

you should understand the following concepts
* autoencoder
* restricted Boltzmann machine (RBM)
* Nash equilibrium
* minimax game
« generative adversarial network (GAN)






Autoencoder @

* Neural networks trained to attempt to copy its input to its output

 Contain two parts:
« Encoder: map the input to a hidden representation
« Decoder: map the hidden representation to the output



Autoencoder

Hidden representation (the code)

Input Reconstruction



Autoencoder

Encoder f (- Decoder g(+)

h=f(x),r=g(h)=g((x))



Why want to copy input to output

 Not really care about copying

* Interesting case: NOT able to copy exactly but strive to do so

» Autoencoder forced to select which aspects to preserve and
thus hopefully can learn useful properties of the data

* Historical note: goes back to (LeCun, 1987; Bourlard and Kamp,
1988; Hinton and Zemel, 1994).



Undercomplete autoencoder

» Constrain the code to have smaller dimension than the input
* Training: minimize a loss function

L(x,7) = L(x, g(f(x)))



Undercomplete autoencoder

» Constrain the code to have smaller dimension than the input
* Training: minimize a loss function

L(x,7) = L(x, g(f(x)))

« Special case: f, g linear, L mean square error
« Reduces to Principal Component Analysis



Undercomplete autoencoder

 What about nonlinear encoder and decoder?

« Capacity should not be too large

e Suppose given data x4, x,, ..., X,
* Encoder maps x; to i
» Decoder maps i to x;

* One dim h suffices for perfect reconstruction



Regularization

 Typically NOT
» Keeping the encoder/decoder shallow or
» Using small code size

* Reqgularized autoencoders: add regularization term that
encourages the model to have other properties
« Sparsity of the representation (sparse autoencoder)
» Robustness to noise or to missing inputs (denoising autoencoder)



Sparse autoencoder

» Constrain the code to have sparsity
« Training: minimize a loss function

Lg = L(x g(f(x))) + R(h)




Probabilistic view of regularizing h

» Suppose we have a probabilistic model p(h, x)
« MLE on x

logp(x) = log ) p(k',x)
hl

« ® Hard to sum over h'



Probabilistic view of regularizing h

» Suppose we have a probabilistic model p(h, x)
« MLE on x
maxlogp(x) = maXlogZ p(h', x)
hl

» Approximation: suppose h = f(x) gives the most likely hidden
representation, and ., p(h’, x) can be approximated by p(h, x)



Probabilistic view of regularizing h @

» Suppose we have a probabilistic model p(h, x)
« Approximate MLE on x, h = f(x)
max logp(h,x) = max logp(x|h) + log p(h)

Loss

Regularization



Sparse autoencoder

» Constrain the code to have sparsity

» Laplacian prior: p(h) = %exp(—%lhh)

* Training: minimize a loss function

Lp = L(x,g(f(x))) + Alhly



Denoising autoencoder

- Traditional autoencoder: encourage to learn g(f(-)) to be
identity

« Denoising : minimize a loss function

L(x,7) = L(x, g(f(®)))

where ¥ IS x + noise
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Boltzmann machine

* Introduced by Ackley et al. (1985)

« General “connectionist” approach to learning arbitrary
probability distributions over binary vectors

P (X) _ eXp(_ZE(x))

« Special case of energy model:



Boltzmann machine

« Energy model:

b (x) = eXP(—ZE(X))

« Boltzmann machine: special case of energy model with
E(x)=—x"Ux—b"x

where U is the weight matrix and b is the bias parameter




Boltzmann machine with latent variables @

« Some variables are not observed
x = (x,,xp), x, visible, x; hidden

E(x) = —xIRx, — xIWx, — x}. Sx,, — bTx, — cTxy,

 Universal approximator of probability mass functions



Maximum likelihood

 Suppose we are given data X = (x.,x2, ..., x})
« Maximum likelihood is to maximize

logp(X) = Z log p(x})

where

1
p(x,) = z P (Xy, Xp) = z ~ exp(—E (xy, xp))

« 7 = ), exp(—E(x,, xp)): partition function, difficult to compute



Restricted Boltzmann machine

* Invented under the name harmonium (Smolensky, 1986)

« Popularized by Hinton and collaborators to Restricted
Boltzmann machine



Restricted Boltzmann machine

» Special case of Boltzmann machine with latent variables:
exp(—E (v, h))
p(v,h) =

Z
where the energy function is
E(w,h) = —vIWh —bTv —cTh

with the weight matrix W/ and the bias b, ¢
« Partition function

7 = z z exp(—E (v, h))
v h




Restricted Boltzmann machine @

Figure from Deep Learning,
Goodfellow, Bengio and Courville



Restricted Boltzmann machine

» Conditional distribution is factorial

h
pmm=“”X{Imww
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p(v)

and
p(h; = 1|v) = o(¢; + vTW., ;)
IS logistic function



Restricted Boltzmann machine

« Similarly,

p(v|h) =

P = Tpcwin

p(v; = 1|h) = a(b; + W;.h)
IS logistic function

and
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Generative Adversarial
Networks (GAN)
e http://www.iangS oeoedll‘gIrl]o?v(.)c?odrﬁgﬁ(\;\ﬁe’sslgéigil)(Sil—igzei]:a‘@utorial.pdf
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THANK YOU

Some of the slides in these lectures have been adapted/borrowed
2 from materials developed by Mark Craven, David Rage, Jude
,(I)‘ Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan,
\W} Tom Dietterich, Pedro Domingos, Geoffrey Hinton, and lan
A4 Q Goodfellow.



