
Learning Theory Part 2:
Mistake Bound Model

CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts

• the on-line learning setting

• the mistake bound model of learnability

• the Halving algorithm

• the Weighted Majority algorithm

Now let’s consider learning in the on-line learning setting:

Learning setting #2: on-line learning

for t = 1 …

learner receives instance x(t)

learner predicts h(x(t))

learner receives label c((t)) and updates model h

The mistake bound model of learning

How many mistakes will an on-line learner

make in its predictions before it learns the

target concept?

the mistake bound model of learning

addresses this question

consider the learning task

• training instances are represented by n Boolean features

• target concept is conjunction of up to n Boolean (negated) literals

FIND-S:

initialize h to the most specific hypothesis x1 ∧ ¬x1 ∧x2∧¬x2 … xn∧ ¬xn

for each positive training instance x

remove from h any literal that is not satisfied by x

output hypothesis h

Example: learning conjunctions with FIND-S

• suppose we’re learning a concept representing the sports someone likes

• instances are represented using Boolean features that characterize the

sport

Snow (is it done on snow?)

Water

Road

Mountain

Skis

Board

Ball (does it involve a ball?)

Example: learning conjunctions with FIND-S

h(x) = false c(x) = true
h: snow ∧ ¬water ∧ ¬road ∧ mountain ∧ skis ∧ ¬board ∧¬ball

x: snow, ¬water, ¬road, mountain, skis, ¬board, ¬ballt = 1

t = 0 snow ∧ ¬snow ∧ water ∧¬water ∧ road ∧ ¬road ∧ mountain

∧ ¬mountain ∧ skis ∧ ¬skis ∧ board ∧¬board ∧ ball ∧¬ball

h:

x: snow, ¬water, ¬road, ¬mountain, skis, ¬board, ¬ballt = 2

h(x) = false c(x) = false

h: snow ∧ ¬water ∧ ¬road ∧ mountain ∧ ¬ball

x: snow, ¬water, ¬road, mountain, ¬skis, board, ¬ballt = 3

h(x) = false c(x) = true

Example: learning conjunctions with FIND-S

Example: learning conjunctions with FIND-S

the maximum # of mistakes FIND-S will make = n + 1

Proof:

• FIND-S will never mistakenly classify a negative (h is always at least as

specific as the target concept)

• initial h has 2n literals

• the first mistake on a positive instance will reduce the initial hypothesis to n

literals

• each successive mistake will remove at least one literal from h

Halving algorithm

// initialize the version space to contain all h ∈ H

VS0 ← H

for t ← 1 to T do

given training instance x(t)

// make prediction for x

h’(x(t)) = MajorityVote(VSt, x
(t))

given label c(x(t))

// eliminate all wrong h from version space (reduce the

size of the VS by at least half on mistakes)

VSt+1 ← {h ∈ VSt : h(x(t)) = c(x(t)) }

return VSt+1

Mistake bound for the Halving algorithm

the maximum # of mistakes the Halving algorithm will make

Proof:

• initial version space contains |H| hypotheses

• each mistake reduces version space by at least half

⎣a⎦ is the largest integer

not greater than a

 ||log2 H=

Optimal mistake bound
[Littlestone, Machine Learning 1987]

VC(C) £ Mopt (C) £ MHalving(C) £ log2 C()

mistakes by best algorithm

(for hardest c ∈ C, and

hardest training sequence)

mistakes by Halving algorithm

let C be an arbitrary concept class

given: a set of predictors A = {a1 … an}, learning rate 0 ≤ β < 1

for all i initialize wi ← 1

for t ← 1 to T do

given training instance x(t)

// make prediction for x

initialize q0 and q1 to 0

for each predictor ai

if ai(x
(t)) = 0 then q0 ←q0 + wi

if ai(x
(t)) = 1 then q1 ←q1 + wi

if q1 > q0 then h(x(t)) = 1

else if q0 > q1 then h(x(t)) ← 0

else if q0 = q1 then h(x(t)) ← 0 or 1 randomly chosen

given label c(x(t))

// update hypothesis

for each predictor ai do

if ai(x
(t)) ≠ c(x(t)) then wi ← β wi

The Weighted Majority algorithm

The Weighted Majority algorithm

• predictors can be individual features or hypotheses or learning

algorithms

• if the predictors are all h ∈ H, then WM is like a weighted voting version of

the Halving algorithm

• WM learns a linear separator, like a perceptron

• weight updates are multiplicative instead of additive (as in

perceptron/neural net training)

• multiplicative is better when there are many features (predictors) but

few are relevant

• additive is better when many features are relevant

• approach can handle noisy training data

Relative mistake bound for Weighted Majority

Let

• D be any sequence of training instances

• A be any set of n predictors

• k be minimum number of mistakes made by best predictor in A for

training sequence D

• the number of mistakes over D made by Weighted Majority using β =1/2 is

at most

2.4(k + log2 n)

Comments on mistake bound learning

• we’ve considered mistake bounds for learning the target concept
exactly

• there are also analyses that consider the number of mistakes until a
concept is PAC learned

• some of the algorithms developed in this line of research have had
practical impact (e.g. Weighted Majority, Winnow) [Blum, Machine
Learning 1997]

THANK YOU
Some of the slides in these lectures have been adapted/borrowed

from materials developed by Mark Craven, David Page, Jude
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,

and Pedro Domingos.

