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Goals for the lecture

you should understand the following concepts

• the on-line learning setting

• the mistake bound model of learnability

• the Halving algorithm

• the Weighted Majority algorithm



Now let’s consider learning in the on-line learning setting:

Learning setting #2: on-line learning 

for t = 1 …

learner receives instance x(t)

learner predicts h(x(t))

learner receives label c((t)) and updates model h



The mistake bound model of learning

How many mistakes will an on-line learner 

make in its predictions before it learns the 

target concept?

the mistake bound model of learning 

addresses this question 



consider the learning task

• training instances are represented by n Boolean features

• target concept is conjunction of up to n Boolean (negated) literals

FIND-S:

initialize h to the most specific hypothesis   x1 ∧ ¬x1 ∧x2∧¬x2 … xn∧ ¬xn

for each positive training instance x

remove from h any literal that is not satisfied by x

output hypothesis h

Example: learning conjunctions with FIND-S



• suppose we’re learning a concept representing the sports someone likes

• instances are represented using Boolean features that characterize the 

sport

Snow (is it done on snow?)

Water

Road

Mountain

Skis

Board

Ball (does it involve a ball?)

Example: learning conjunctions with FIND-S



h(x) = false c(x) = true
h:    snow ∧ ¬water ∧ ¬road ∧ mountain ∧ skis ∧ ¬board ∧¬ball

x: snow, ¬water, ¬road, mountain, skis, ¬board, ¬ballt = 1

t = 0 snow ∧ ¬snow ∧ water ∧¬water ∧ road ∧ ¬road ∧ mountain 

∧ ¬mountain ∧ skis ∧ ¬skis ∧ board ∧¬board ∧ ball ∧¬ball

h:

x: snow, ¬water, ¬road, ¬mountain, skis, ¬board, ¬ballt = 2

h(x) = false c(x) = false 

h:    snow ∧ ¬water ∧ ¬road ∧ mountain ∧ ¬ball

x: snow, ¬water, ¬road, mountain, ¬skis, board, ¬ballt = 3

h(x) = false c(x) = true

Example: learning conjunctions with FIND-S



Example: learning conjunctions with FIND-S

the maximum # of mistakes FIND-S will make = n + 1

Proof:

• FIND-S will never mistakenly classify a negative (h is always at least as 

specific as the target concept)

• initial h has 2n literals

• the first mistake on a positive instance will reduce the initial hypothesis to n

literals

• each successive mistake will remove at least one literal from h



Halving algorithm

// initialize the version space to contain all h ∈ H

VS0 ← H

for t ← 1 to T do

given training instance x(t)

// make prediction for x

h’(x(t)) = MajorityVote(VSt, x
(t) )

given label c(x(t)) 

// eliminate all wrong h from version space (reduce the 

size of the VS by at least half on mistakes)

VSt+1 ← {h ∈ VSt : h(x(t)) = c(x(t)) }

return  VSt+1



Mistake bound for the Halving algorithm

the maximum # of mistakes the Halving algorithm will make 

Proof:

• initial version space contains |H| hypotheses

• each mistake reduces version space by at least half

⎣a⎦ is the largest integer 

not greater than a

 ||log2 H=



Optimal mistake bound
[Littlestone, Machine Learning 1987]

VC(C) £  Mopt (C) £  MHalving(C) £  log2 C( )

# mistakes by best algorithm

(for hardest c ∈ C, and 

hardest training sequence)

# mistakes by Halving algorithm

let C be an arbitrary concept class



given: a set of predictors A = {a1 … an}, learning rate 0 ≤ β < 1

for all i initialize wi ← 1

for t ← 1 to T do

given training instance x(t)

// make prediction for x

initialize q0 and q1 to 0

for each predictor ai

if ai(x
(t)) = 0 then q0 ←q0 + wi

if ai(x
(t)) = 1 then q1 ←q1 + wi

if q1 > q0 then h(x(t)) = 1

else if q0 > q1 then h(x(t)) ← 0

else if q0 = q1 then h(x(t)) ← 0 or 1 randomly chosen

given label c(x(t)) 

// update hypothesis

for each predictor ai do

if ai(x
(t)) ≠ c(x(t)) then wi ← β wi

The Weighted Majority algorithm



The Weighted Majority algorithm

• predictors can be individual features or hypotheses or learning 

algorithms

• if the predictors are all h ∈ H, then WM is like a weighted voting version of 

the Halving algorithm

• WM learns a linear separator, like a perceptron

• weight updates are multiplicative instead of additive (as in 

perceptron/neural net training)

• multiplicative is better when there are many features (predictors) but 

few are relevant

• additive is better when many features are relevant

• approach can handle noisy training data



Relative mistake bound for Weighted Majority

Let

• D be any sequence of training instances

• A be any set of n predictors

• k be minimum number of mistakes made by best predictor in A for 

training sequence D

• the number of mistakes over D made by Weighted Majority using β =1/2 is 

at most

2.4(k + log2 n)



Comments on mistake bound learning

• we’ve considered mistake bounds for learning the target concept 
exactly

• there are also analyses that consider the number of mistakes until a 
concept is PAC learned

• some of the algorithms developed in this line of research have had 
practical impact (e.g. Weighted Majority, Winnow) [Blum, Machine 
Learning 1997]



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 


