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~ Learning Theory Part 3:




Goals for the lecture

you should understand the following concepts
e estimating bias and variance
* the bias-variance decomposition



Estimation bias and variance @

« How will predictive accuracy (error) change as we vary k in
k-NN7?

* Or as we vary the complexity of our decision trees?

* the bias/variance decomposition of error can lend some
Insight into these questions

L note that this is a different sense of bias

than in the term inductive bias



Background: Expected values

* the expected value of a random variable that takes on
numerical values is defined as:

= > xP(x)
X
this is the same thing as the mean

« we can also talk about the expected value of a function
of a random variable

E[g(X)]= ZQ(X)P(X)



Defining bias and variance @

« consider the task of learning a regression model f(x; D)

given a training set D = {(x®, y®), .., (x™, y™)} /

. indicates the
« a natural measure of the error of f is dependency of

model on D
El(y - (D)} D]

where the expectation is taken with respect to the
real-world distribution of instances



Defining bias and variance @

* this can be rewritten as:

E|(v- /(e D))’ |x, D] = E[(y - ELy |¥]))* |x, D
+(f(x; D) - Ely | x])° \

error of fas a predictog/ %n,;ﬁ;gzg?@ (;fnylgji;/f}l X,



Defining bias and variance

now consider the expectation (over different data sets D) for the
second term

£, [(f(x, D) - E[y |x])2] —
(ED [f(x; D)] - E[y |x])2 bias

+ ED[(f (x; D) - E, [ f(x; D)])Z] variance

bias: if on average f(x; D) differs from E [y | x] then f(x; D) is a biased

estimator of £ [y | x]
variance: f(x; D) may be sensitive to D and vary a lot from its

expected value



Bias/variance for polynomial interpolation@

the 1st order
polynomial has high
bias, low variance

50t order polynomial
has low bias, high
variance

4th order polynomial
represents a good
trade-off

0.5

true model
O observations
-------- interpolation
polynomials models:
50th order
4th order
—_ 1st order




Bias/variance trade-off for k-NN regressioff)

« consider using £-NN regression to learn a model of this
surface in a 2-dimensional feature space




Bias/variance trade-off for k-NN regressiofy

bias for 1-NN darker pixels
correspond to

higher values

B m

b

bias for 10-NN

h

variance for 10-NN



Bias/variance trade-off

« consider &-NN applied
to digit recognition
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Bias/variance discussion @

» predictive error has two controllable components

 expressive/flexible learners reduce bias, but increase
variance

« for many learners we can trade-off these two components
(e.g. via our selection of £ in A~-NN)

* the optimal point in this trade-off depends on the particular
problem domain and training set size

* this Is not necessarily a strict trade-off; e.g. with ensembles
we can often reduce bias and/or variance without increasing
the other term



Bias/variance discussion

the bias/variance analysis

* helps explain why simple learners can outperform more
complex ones

* helps understand and avoid overfitting



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
2 from materials developed by Mark Craven, David Rage, Jude
@b‘ Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
i

W} and Pedro Domingos.
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