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Goals for the lecture

you should understand the following concepts

• estimating bias and variance

• the bias-variance decomposition



Estimation bias and variance

• How will predictive accuracy (error) change as we vary k in 
k-NN?

• Or as we vary the complexity of our decision trees?

• the bias/variance decomposition of error can lend some 
insight into these questions

note that this is a different sense of bias

than in the term inductive bias 



Background: Expected values

• the expected value of a random variable that takes on 
numerical values is defined as:

this is the same thing as the mean

• we can also talk about the expected value of a function 
of a random variable
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Defining bias and variance

• consider the task of learning a regression model           

given a training set

• a natural measure of the error of f is
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f (x; D)

where the expectation is taken with respect to the 

real-world distribution of instances

indicates the

dependency of

model on D
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Defining bias and variance

• this can be rewritten as:

  

  

E y - f (x; D)( )
2

| x, D[ ] = E y - E[y | x]( )
2

| x, D[ ]
                                      + f (x; D) - E[y | x]( )

2

noise: variance of y given x;

doesn’t depend on D or f
error of f as a predictor of y



Defining bias and variance

  

  

ED f (x; D) - E[y | x]( )
2[ ] =

                   ED f (x; D)[ ] - E y | x[ ]( )
2

                + ED f (x; D) - ED f (x; D)[ ]( )
2

[ ] variance

bias

• bias: if on average f (x; D) differs from E [y | x] then f (x; D) is a biased 

estimator of E [y | x] 

• variance: f (x; D) may be sensitive to D and vary a lot from its 

expected value

• now consider the expectation (over different data sets D) for the 

second term



Bias/variance for polynomial interpolation

• the 1st order 

polynomial has high 

bias, low variance

• 50th order polynomial 

has low bias, high 

variance

• 4th order polynomial 

represents a good 

trade-off



Bias/variance trade-off for k-NN regression

• consider using k-NN regression to learn a model of this 

surface in a 2-dimensional feature space



bias for 1-NN

variance for 1-NN

variance for 10-NN

bias for 10-NN

darker pixels

correspond to 

higher values

Bias/variance trade-off for k-NN regression



Bias/variance trade-off

• consider k-NN applied 

to digit recognition



Bias/variance discussion

• predictive error has two controllable components

• expressive/flexible learners reduce bias, but increase 
variance

• for many learners we can trade-off these two components 
(e.g. via our selection of k in k-NN)

• the optimal point in this trade-off depends on the particular 
problem domain and training set size

• this is not necessarily a strict trade-off; e.g. with ensembles 
we can often reduce bias and/or variance without increasing 
the other term



Bias/variance discussion

the bias/variance analysis 

• helps explain why simple learners can outperform more 
complex ones

• helps understand and avoid overfitting



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 


