Bayesian Networks Part 1

CS760@UW-Madison

Goals for the lecture

you should understand the following concepts

- the Bayesian network representation
- inference by enumeration
- the parameter learning task for Bayes nets
- the structure learning task for Bayes nets
- maximum likelihood estimation
- Laplace estimates
- m-estimates

Bayesian network example

- Consider the following 5 binary random variables:
$B=$ a burglary occurs at your house
$E=$ an earthquake occurs at your house
$A=$ the alarm goes off
$J=$ John calls to report the alarm
$M=$ Mary calls to report the alarm
- Suppose we want to answer queries like what is $P(B \mid M, J)$?

Bayesian network example

Bayesian network example

Bayesian networks

- a BN consists of a Directed Acyclic Graph (DAG) and a set of conditional probability distributions
- in the DAG
- each node denotes random a variable
- each edge from X to Y represents that X directly influences Y
- formally: each variable X is independent of its nondescendants given its parents
- each node X has a conditional probability distribution (CPD) representing $P(X \mid \operatorname{Parents}(X)$)

Bayesian networks

- using the chain rule, a joint probability distribution can be expressed as

$$
P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) \prod_{i=2}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

- a BN provides a compact representation of a joint probability distribution

$$
P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) \prod_{i=2}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

Bayesian networks

- a standard representation of the joint distribution for the Alarm example has $2^{5}=32$ parameters
- the BN representation of this distribution has 20 parameters

Bayesian networks

- consider a case with 10 binary random variables
- How many parameters does a BN with the following graph structure have?

- How many parameters does the standard table representation of the joint distribution have?

Advantages of Bayesian network representation(

- Captures independence and conditional independence where they exist
- Encodes the relevant portion of the full joint among variables where dependencies exist
- Uses a graphical representation which lends insight into the complexity of inference

The inference task in Bayesian networks

Given: values for some variables in the network (evidence), and a set of query variables
Do: compute the posterior distribution over the query variables

- variables that are neither evidence variables nor query variables are hidden variables
- the BN representation is flexible enough that any set can be the evidence variables and any set can be the query variables

Inference by enumeration

- let a denote $\boldsymbol{A}=$ true, and $\neg a$ denote $\boldsymbol{A}=$ false
- suppose we're given the query: $P(b \mid j, m)$
"probability the house is being burglarized given that John and Mary both called"
- from the graph structure we can first compute:

$$
P(b, j, m)=\sum_{e, \neg e a, \neg a} \sum_{\substack{ \\\text { sum over possible } \\ \text { values for } E \text { and } A \\ \text { variables }(e, \neg e, a, \neg a)}}
$$

Inference by enumeration

$$
\begin{aligned}
P(b, j, m) & =\sum_{e, \neg e a, \neg a} \sum_{e, ~} P(b) P(E) P(A \mid b, E) P(j \mid A) P(m \mid A) \\
& =P(b) \sum_{e, \neg a, \neg a} \sum P(E) P(A \mid b, E) P(j \mid A) P(m \mid A)
\end{aligned}
$$

Inference by enumeration

- now do equivalent calculation for $P(\neg b, j, m)$
- and determine $P(b \mid j, m)$

$$
P(b \mid j, m)=\frac{P(b, j, m)}{P(j, m)}=\frac{P(b, j, m)}{P(b, j, m)+P(\neg b, j, m)}
$$

Comments on BN inference

- inference by enumeration is an exact method (i.e. it computes the exact answer to a given query)
- it requires summing over a joint distribution whose size is exponential in the number of variables
- in many cases we can do exact inference efficiently in large networks
- key insight: save computation by pushing sums inward
- in general, the Bayes net inference problem is NP-hard
- there are also methods for approximate inference - these get an answer which is "close"
- in general, the approximate inference problem is NP-hard also, but approximate methods work well for many real-world problems

The parameter learning task

- Given: a set of training instances, the graph structure of a BN

B	E	A	J	M
f	f	f	t	f
f	t	f	f	f
f	f	t	f	t
		\ldots		

- Do: infer the parameters of the CPDs

The structure learning task

- Given: a set of training instances

B	E	A	J	M
f	f	f	t	f
f	t	f	f	f
f	f	t	f	t
		\ldots		

- Do: infer the graph structure (and perhaps the parameters of the CPDs too)

Parameter learning and MLE

- maximum likelihood estimation (MLE)
- given a model structure (e.g. a Bayes net graph) G and a set of data D
- set the model parameters θ to maximize $P(D \mid G, \theta)$
- i.e. make the data D look as likely as possible under the model $P(D \mid G, \theta)$

Maximum likelihood estimation

consider trying to estimate the parameter θ (probability of heads) of a biased coin from a sequence of flips

$$
\boldsymbol{x}=\{1,1,1,0,1,0,0,1,0,1\}
$$

the likelihood function for θ is given by:

$$
\begin{aligned}
L\left(\theta: x_{1}, \ldots, x_{n}\right) & =\theta^{x_{1}}(1-\theta)^{1-x_{1}} \cdots \theta^{x_{n}}(1-\theta)^{1-x_{n}} \\
& =\theta^{\sum^{x_{i}}}(1-\theta)^{n-\sum_{x_{i}}}
\end{aligned}
$$

for h heads in n flips the MLE is h / n

MLE in a Bayes net

$$
\begin{aligned}
L(\theta: D, G)=P(D \mid G, \theta) & =\prod_{d \in D} P\left(x_{1}^{(d)}, x_{2}^{(d)}, \ldots, x_{n}^{(d)}\right) \\
& =\prod_{d \in D} \prod_{i} P\left(x_{i}^{(d)} \mid \operatorname{Parents}\left(x_{i}^{(d)}\right)\right) \\
& =\prod_{i}\left(\prod_{d \in D} P\left(x_{i}^{(d)} \mid \operatorname{Parents}\left(x_{i}^{(d)}\right)\right)\right)
\end{aligned}
$$

independent parameter learning problem for each CPD

Maximum likelihood estimation

now consider estimating the CPD parameters for B and J in the alarm network given the following data set

B	E	A	J	M
f	f	f	t	f
f	t	f	f	f
f	f	f	t	t
t	f	f	f	t
f	f	t	t	f
f	f	t	f	t
f	f	t	t	t
f	f	t	t	t

$$
\begin{aligned}
& P(b)=\frac{1}{8}=0.125 \\
& P(\neg b)=\frac{7}{8}=0.875 \\
& P(j \mid a)=\frac{3}{4}=0.75 \\
& P(\neg j \mid a)=\frac{1}{4}=0.25 \\
& P(j \mid \neg a)=\frac{2}{4}=0.5 \\
& P(\neg j \mid \neg a)=\frac{2}{4}=0.5
\end{aligned}
$$

Maximum likelihood estimation

suppose instead, our data set was this...

Maximum a posteriori (MAP) estimation (©)

- instead of estimating parameters strictly from the data, we could start with some prior belief for each
- for example, we could use Laplace estimates

$$
P(X=x)=\frac{n_{x}+1}{\sum_{v \in \operatorname{Values}(X)}\left(n_{v}+1\right)} \text { pseudocounts }
$$

- where n_{v} represents the number of occurrences of value v

Maximum a posteriori (MAP) estimation

a more general form: m-estimates

$$
P(X=x)=\frac{n_{x}+\tilde{p}_{x} m}{\left(\sum_{v \in \operatorname{Values}(X)} n_{v}\right)+m} \text { prior probability of value } x
$$

M-estimates example

now let's estimate parameters for B using $m=4$ and $p_{b}=0.25$

| B | E | A | J | M |
| :---: | :---: | :---: | :---: | :---: | :---: |
| f | f | f | t | f |
| f | t | f | f | f |
| f | f | f | t | t |
| f | f | f | f | t |
| f | f | t | t | f |
| f | f | t | f | t |
| f | f | t | t | t |
| f | f | t | t | t |

$$
P(b)=\frac{0+0.25 \times 4}{8+4}=\frac{1}{12}=0.08 \quad P(\neg b)=\frac{8+0.75 \times 4}{8+4}=\frac{11}{12}=0.92
$$

THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.

