Bayesian Networks Part 2

CS760@UW-Madison

Goals for the lecture

you should understand the following concepts

- missing data in machine learning
- hidden variables
- missing at random
- missing systematically
- the EM approach to imputing missing values in Bayes net parameter learning
- the Chow-Liu algorithm for structure search

Missing data

- Commonly in machine learning tasks, some feature values are missing
- some variables may not be observable (i.e. hidden) even for training instances
- values for some variables may be missing at random: what caused the data to be missing does not depend on the missing data itself
- e.g. someone accidentally skips a question on an questionnaire
- e.g. a sensor fails to record a value due to a power blip
- values for some variables may be missing systematically: the probability of value being missing depends on the value
- e.g. a medical test result is missing because a doctor was fairly sure of a diagnosis given earlier test results
- e.g. the graded exams that go missing on the way home from school are those with poor scores

Missing data

- hidden variables; values missing at random
- these are the cases we'll focus on
- one solution: try impute the values
- values missing systematically
- may be sensible to represent "missing" as an explicit feature value

Imputing missing data with EM

Given:

- data set with some missing values
- model structure, initial model parameters

Repeat until convergence

- Expectation (E) step: using current model, compute expectation over missing values
- Maximization (M) step: update model parameters with those that maximize probability of the data (MLE or MAP)

Example: EM for parameter learning

suppose we're given the following initial BN and training set

B	E	A	J	M
f	f	$?$	f	f
f	f	$?$	t	f
t	f	$?$	t	t
f	f	$?$	f	t
f	t	$?$	t	f
f	f	$?$	f	t
t	t	$?$	t	t
f	f	$?$	f	f
f	f	$?$	t	f
f	f	$?$	f	t

Example: E-step

Example: E-step

Example: M-step

re-estimate probabilities using expected counts
$P(a \mid b, e)=\frac{0.997}{1}$
$P(a \mid b, \neg e)=\frac{0.98}{1}$
$P(a \mid \neg b, e)=\frac{0.3}{1}$
$P(a \mid \neg b, \neg e)=\frac{0.0069+0.2+0.2+0.2+0.0069+0.2+0.2}{7}$

\boldsymbol{B}	\boldsymbol{E}	$\boldsymbol{P}(\boldsymbol{A})$
t	t	0.997
t	f	0.98
f	t	0.3
f	f	0.145

re-estimate probabilities for
M) $P(J \mid A)$ and $P(M \mid A)$ in same way

$$
P(a \mid b, e)=\frac{E \#(a \wedge b \wedge e)}{E \#(b \wedge e)}
$$

B	E	A	J	M
f	f	$\begin{aligned} & \text { t: } 0.0069 \\ & \text { f: } 0.9931 \end{aligned}$	f	f
f	f	$\begin{aligned} & \mathrm{t}: 0.2 \\ & \mathrm{f}: 0.8 \end{aligned}$	t	f
t	f	$\begin{aligned} & \mathrm{t}: 0.98 \\ & \mathrm{f}: 0.02 \end{aligned}$	t	t
f	f	$\begin{aligned} & \text { t: } 0.2 \\ & \text { f: } 0.8 \end{aligned}$	f	t
f	t	$\begin{aligned} & \text { t: } 0.3 \\ & \text { f: } 0.7 \end{aligned}$	t	f
f	f	$\begin{aligned} & \text { t:0.2 } \\ & \text { f: } 0.8 \end{aligned}$	f	t
t	t	$\begin{aligned} & \text { t: } 0.997 \\ & \text { f: } 0.003 \end{aligned}$	t	t
f	f	$\begin{aligned} & \text { t: } 0.0069 \\ & \text { f: }: 0.9931 \end{aligned}$	f	f
f	f	$\begin{aligned} & \text { t:0.2 } \\ & \text { f: } 0.8 \end{aligned}$	t	f
f	f	$\begin{aligned} & \text { t: } 0.2 \\ & \text { f: } 0.8 \end{aligned}$	f	t

Example: M-step

re-estimate probabilities
using expected counts
$P(j \mid a)=$
$\frac{0.2+0.98+0.3+0.997+0.2}{0.0069+0.2+0.98+0.2+0.3+0.2+0.997+0.0069+0.2+0.2}$
$P(j \mid \neg a)=$
$\overline{0.9931+0.8+0.02+0.8+0.7+0.8+0.003+0.9931+0.8+0.8}$

B	E	A	J	M
f	f	$\begin{aligned} & \text { t: } 0.0069 \\ & \text { f: } 0.9931 \end{aligned}$	f	f
f	f	$\begin{aligned} & \mathrm{t}: 0.2 \\ & \mathrm{f}: 0.8 \end{aligned}$	t	f
t	f	$\begin{aligned} & \mathrm{t}: 0.98 \\ & \mathrm{f}: 0.02 \end{aligned}$	t	t
f	f	$\begin{aligned} & \text { t: } 0.2 \\ & \text { f: } 0.8 \end{aligned}$	f	t
f	t	$\begin{aligned} & \text { t: } 0.3 \\ & \text { f: } 0.7 \end{aligned}$	t	f
f	f	$\begin{aligned} & \text { t:0.2 } \\ & \text { f: } 0.8 \end{aligned}$	f	t
t	t	$\begin{aligned} & \text { t: } 0.997 \\ & \text { f: } 0.003 \end{aligned}$	t	t
f	f	$\begin{aligned} & \text { t: } 0.0069 \\ & \text { f: } 0.9931 \end{aligned}$	f	f
f	f	$\begin{aligned} & \text { t:0.2 } \\ & \text { f: } 0.8 \end{aligned}$	t	f
f	f	$\begin{aligned} & \mathrm{t}: 0.2 \\ & \mathrm{f}: 0.8 \end{aligned}$	f	t

Convergence of EM

- E and M steps are iterated until probabilities converge
- will converge to a maximum in the data likelihood (MLE or MAP)
- the maximum may be a local optimum, however
- the optimum found depends on starting conditions (initial estimated probability parameters)

Learning structure + parameters

- number of structures is superexponential in the number of variables
- finding optimal structure is NP-complete problem
- two common options:
- search very restricted space of possible structures (e.g. networks with tree DAGs)
- use heuristic search (e.g. sparse candidate)

The Chow-Liu algorithm

- learns a BN with a tree structure that maximizes the likelihood of the training data
- algorithm

1. compute weight $I\left(X_{i}, X_{j}\right)$ of each possible edge $\left(X_{i}, X_{j}\right)$
2. find maximum weight spanning tree (MST)
3. assign edge directions in MST

The Chow-Liu algorithm

1. use mutual information to calculate edge weights

$$
I(X, Y)=\sum_{x \in \operatorname{values}(X)} \sum_{y \in \operatorname{values}(Y)} P(x, y) \log _{2} \frac{P(x, y)}{P(x) P(y)}
$$

The Chow-Liu algorithm

2. find maximum weight spanning tree: a maximal-weight tree that connects all vertices in a graph

The Chow-Liu algo always have a complete graph, but here we use a non-complete graph as the example for clarity.

Prim's algorithm for finding an MST

given: graph with vertices V and edges E
$V_{\text {new }} \leftarrow\{v\}$ where v is an arbitrary vertex from V
$E_{\text {new }} \leftarrow\{ \}$
repeat until $V_{\text {new }}=V$
\{
choose an edge (u, v) in E with max weight where u is in $V_{\text {new }}$ and v is not add v to $V_{\text {new }}$ and (u, v) to $E_{\text {new }}$
\}
return $V_{\text {new }}$ and $E_{\text {new }}$ which represent an MST

Kruskal's algorithm for finding an MST

given: graph with vertices V and edges E
$E_{\text {new }} \leftarrow\{ \}$
for each (u, v) in E ordered by weight (from high to low)
\{
remove (u, v) from E
if adding (u, v) to $E_{\text {new }}$ does not create a cycle
add (u, v) to $E_{\text {new }}$
\}
return V and $E_{\text {new }}$ which represent an MST

Finding MST in Chow-Liu

ii.

iii.

iv.

Finding MST in Chow-Liu

Returning directed graph in Chow-Liu

3. pick a node for the root, and assign edge directions

The Chow-Liu algorithm

- How do we know that Chow-Liu will find a tree that maximizes the data likelihood?
- Two key questions:
- Why can we represent data likelihood as sum of $I(X ; Y)$ over edges?
-Why can we pick any direction for edges in the tree?

Why Chow-Liu maximizes likelihood for a tree

data likelihood given directed edges

$$
\begin{aligned}
& \quad \log _{2} P\left(D \mid G, \theta_{G}\right)=\sum_{d \in D} \sum_{i} \log _{2} P\left(x_{i}^{(d)} \mid \operatorname{Parents}\left(X_{i}\right)\right) \\
& \mathrm{E}\left[\log _{2} P\left(D \mid G, \theta_{G}\right)\right]=|D| \sum_{i}\left(I\left(X_{i}, \operatorname{Parents}\left(X_{i}\right)\right)-H\left(X_{i}\right)\right) \\
& \text { we're interested in finding the graph }{ }^{\text {t that maximizes this }} \\
& \arg \max _{G} \log _{2} P\left(D \mid G, \theta_{G}\right)=\arg \max _{G} \sum_{i} I\left(X_{i}, \operatorname{Parents}\left(X_{i}\right)\right)
\end{aligned}
$$

if we assume a tree, each node has at most one parent

$$
\arg \max _{G} \log _{2} P\left(D \mid G, \theta_{G}\right)=\arg \max _{G} \sum_{\left(X_{i}, X_{j}\right) \text { edges }} I\left(X_{i}, X_{j}\right)
$$

edge directions don't matter for likelihood, because MI is symmetric

$$
I\left(X_{i}, X_{j}\right)=I\left(X_{j}, X_{i}\right)
$$

THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.

