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Goals for the lecture

you should understand the following concepts

• missing data in machine learning

• hidden variables

• missing at random

• missing systematically

• the EM approach to imputing missing values in Bayes net parameter 

learning

• the Chow-Liu algorithm for structure search



Missing data

• Commonly in machine learning tasks, some feature values are missing

• some variables may not be observable (i.e. hidden) even for training instances

• values for some variables may be missing at random: what caused the data to 

be missing does not depend on the missing data itself

• e.g. someone accidentally skips a question on an questionnaire

• e.g. a sensor fails to record a value due to a power blip

• values for some variables may be missing systematically: the probability of 

value being missing depends on the value

• e.g. a medical test result is missing because a doctor was fairly sure of a 

diagnosis given earlier test results

• e.g. the graded exams that go missing on the way home from school are 

those with poor scores



Missing data

• hidden variables; values missing at random

• these are the cases we’ll focus on

• one solution: try impute the values

• values  missing systematically

• may be sensible to represent “missing” as an explicit feature value



Imputing missing data with EM

Given:

• data set with some missing values

• model structure, initial model parameters

Repeat until convergence

• Expectation (E) step: using current model, compute 

expectation over missing values

• Maximization (M) step: update model parameters with 

those that maximize probability of the data (MLE or MAP) 



Example: EM for parameter learning
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Example: E-step
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Convergence of EM

• E and M steps are iterated until probabilities 

converge

• will converge to a maximum in the data likelihood 

(MLE or MAP)

• the maximum may be a local optimum, however

• the optimum found depends on starting conditions 

(initial estimated probability parameters)



Learning structure + parameters

• number of structures is superexponential in the number of 
variables

• finding optimal structure is NP-complete problem

• two common options:

• search very restricted space of possible structures  
(e.g. networks with tree DAGs)

• use heuristic search (e.g. sparse candidate)



The Chow-Liu algorithm

• learns a BN with a tree structure that maximizes the 
likelihood of the training data

• algorithm

1. compute weight I(Xi, Xj) of each possible edge (Xi, Xj)

2. find maximum weight spanning tree (MST)

3. assign edge directions in MST



1. use mutual information to calculate edge weights
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The Chow-Liu algorithm



2. find maximum weight spanning tree: a maximal-weight 
tree that connects all vertices in a graph
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The Chow-Liu algorithm

The Chow-Liu algo always have a complete graph, but here 

we use a non-complete graph as the example for clarity. 



Prim’s algorithm for finding an MST

given: graph with vertices V and edges E

Vnew ← { v }  where v is an arbitrary vertex from V

Enew ← { } 

repeat until Vnew = V

{

choose an edge (u, v) in E with max weight where u is in Vnew and v is not

add v to Vnew and (u, v) to  Enew

}

return Vnew and Enew which represent an MST



Kruskal’s algorithm for finding an MST

given: graph with vertices V and edges E

Enew ← { } 

for each (u, v) in E ordered by weight (from high to low)

{

remove (u, v) from E

if adding (u, v) to Enew does not create a cycle

add (u, v) to  Enew

}

return V and Enew which represent an MST



Finding MST in Chow-Liu
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Finding MST in Chow-Liu

A

B

C

D E

F G

1

5

1

5

1

7

1

8

1

9

1

7
1

15

1

6

1

8
1

9

1

11

v. A

B

C

D E

F G

1

5

1

5

1

7

1

8

1

9

1

7
1

15

1

6

1

8
1

9

1

11

vi.



Returning directed graph in Chow-Liu
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3. pick a node for the root, and assign edge directions



The Chow-Liu algorithm

• How do we know that Chow-Liu will find a tree that 
maximizes the data likelihood?

• Two key questions:

• Why can we represent data likelihood as sum of I(X;Y)
over edges?

• Why can we pick any direction for edges in the tree?



Why Chow-Liu maximizes likelihood (for a tree)

data likelihood given directed edges

we’re interested in finding the graph G that maximizes this

if we assume a tree, each node has at most one parent

I(Xi ,X j ) = I(X j ,Xi )

edge directions don’t matter for likelihood, because MI is symmetric
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THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 


