


Goals for the lecture

you should understand the following concepts
e structure learning as search
» Kullback-Leibler divergence
» the Sparse Candidate algorithm

* the Tree Augmented Network (TAN) algorithm



Heuristic search for structure learning @

 each state in the search space represents a DAG Bayes
net structure
* to instantiate a search approach, we need to specify
e scoring function
e State transition operators
 search algorithm



Scoring function decomposabillity

« when the appropriate priors are used, and all instances
In D are complete, the scoring function can be
decomposed as follows

score(G, D) = » score(X;, Parents(X;) : D)

 thus we can

— score a network by summing terms over the nodes in
the network

— efficiently score changes in a local search procedure



Scoring functions for structure learning

Can we find a good structure just by trying to maximize the
likelihood of the data?

argmaxg , logP(D |G, 6;)

 If we have a strong restriction on the the structures allowed
(e.g. a tree), then maybe.

« Otherwise, no! Adding an edge will never decrease
likelihood. Overfitting likely.



Scoring functions for structure learning @

 there are many different scoring functions for BN structure
search

« one general approach

argmax; , logP(D|G,6;)— f(m)|6; |
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complexity penalty

Akaike Information Criterion (AIC): f(m) =1

Bayesian Information Criterion (BIC): f(m) — IOg(m)



Structure search operators @
given the current network

at some stage of the search,

we Ccan... e

@

add an edge / 1 \ reverse an edge
delete an edge
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Bayesian network search: hill-climbing

given: data set D, initial network B,

i=0
Bbest (_BO
while stopping criteria not met

{

for each possible operator application a

{

if score(B,,,) > score(B,,,,)
Bbest — Bnew
}
i
Bi A Bbest

}

return B,

o



Bayesian network search: the Sparse
Candidate algOrithm [Friedman et al., UAI 1999]

given: data set D, initial network B,, parameter k

i=0
repeat

{

i

/I restrict step
select for each variable X; a set C/ of candidate parents (|C/| < k)

/[ maximize step

find network B, maximizing score among networks where VX,
Parents(X) cC/

} until convergence
return B,



The restrict step in Sparse Candidate @

 to identify candidate parents in the first iteration, can compute
the mutual information between pairs of variables

_ P(x,y)
I (X ’Y) - XGvaIuZes(X) yeva%s(Y) P(X’ y) Iog2 P(X)P(y)




The restrict step in Sparse Candidate

true distribution current network

g o

we’re selecting two candidate parents for
A, and I(4, C) > I(A, D) > I(A, B)

e Suppose:

« with mutual information, the candidate O
parents for 4 would be C and D

* how could we get B as a candidate parent?



The restrict step in Sparse Candidate @

« Kullback-Lelbler (KL) divergence provides a distance
measure between two distributions, P and Q

P(x)
P(X) |Q(X P(x)l
Dy (P(X)[[Q(X)) = Z () 500

« mutual information can be thought of as the KL
divergence between the distributions

P(X,Y)

P(X)P(Y) (assumes X and Y are independent)



The restrict step in Sparse Candidate

« we can use KL to assess the discrepancy between the
network’s P (X, Y) and the empirical P(X, Y)

M(X,Y) = Dy (P(X,Y))|| £, (X,Y))

true distribution current Bayes net

i
iV

Dy, (P(4,B)) || F,

et

- @?

(4, B))

et

« can estimate P, (X, ¥) by sampling from the network (i.e.

using it to generate instances)

o



The restrict step in Sparse Candidate

given: data set D, current network B;, parameter £

for each variable Xj

{

calculate M(X; , X;) for all X; # X; such that X, ¢ Parents(X))
choose highest ranking X; ... X, i where s= | Parents(X)) |

// include current parents in candidate set to ensure monotonic
// improvement in scoring function
C/=Parents(X)) U X, ... X

}

return { C/ } for all X;



The maximize step in Sparse Candidate ({j

* hill-climbing search with add-edge, delete-edge, reverse-
edge operators

» test to ensure that cycles aren’t introduced into the graph



Efficiency of Sparse Candidate

n = number of variables

o

possible parent

changes scored on

changes scored on

first iteration of subsequent
sets for each node ) .
search iterations
ordinary greedy ( n ) ( 2)
o 0(2 O(n O(n)
greedy search w/at O n O(nz) 0O ( )
most & parents k n
Sparse Candidate O (2k ) O (kn) O (k)

after we apply an operator, the scores will change only for edges j

from the parents of the node with the new impinging edge




Bayes nets for classification (]

* the learning methods for BNs we’ve discussed so far can be
thought of as being unsupervised

* the learned models are not constructed to predict the
value of a special class variable

* Instead, they can predict values for arbitrarily selected
guery variables

* now let’s consider BN learning for a standard supervised
task (learn a model to predict Y given X, ... X )



Nalve Bayes @

 one very simple BN approach for supervised tasks is naive Bayes

* in naive Bayes, we assume that all features X; are conditionally
Independent given the class Y

P(X,,y X, Y) = P(Y)f[ P(X. [Y)



Nalve Bayes

Learning
 estimate P(Y = y) for each value of the class variable Y
* estimate P(X; =x | Y = y) for each X,

Classification: use Bayes’ Rule

P[P 1Y)
P(Y =y [X) = P(y)P(x1Y) ]

ZPOIPIY) Z(P(y')ﬁp(my')j

V'




Nalve Bayes vs. BNs learned with an @
unsupervised structure search

test-set error on 25 40 - -
classification data sets from 35 | -
the UC-Irvine Repository

Naive Bayes Error
]
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Figure from Friedman et al., Machine Learning 1997



The Tree Augmented Network (TAN) algorithn@

[Friedman et al., Machine Learning 1997]

e learns a tree structure to augment the edges of a naive
Bayes network

« algorithm

1. compute weight I(X, X; | ¥) for each possible edge
(X, X)) between features

2. find maximum weight spanning tree (MST) for graph
over X, ... X,

3. assign edge directions in MST

construct a TAN model by adding node for Y and an
edge from Y to each X,

>



Conditional mutual information in TAN

conditional mutual information is used to calculate edge weights

1(X;, X |Y) =
P(Xi, X; |Y)
222 POux;y)log, !
x;evalues(X;) x;evalues(X ;) yevalues(Y) P(Xi | y)P(XJ | y)

“how much information X; provides about X; when the value of Y'is known”



Example TAN network
/ class variable

\; DPF \
Pregnant O\

naive Bayes edges @ =0 0----- >

edges determined by MST —_—



TAN vs. Chow-LIu

* TAN Is focused on learning a Bayes net specifically for
classification problems

* the MST Iincludes only the feature variables (the class
variable is used only for calculating edge weights)

« conditional mutual information is used instead of mutual
Information in determining edge weights in the undirected
graph

* the directed graph determined from the MST Is added to
the Y — X. edges that are in a naive Bayes network



TAN vs. Nalve Bayes
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Figure from Friedman et al., Machine Learning 1997



Comments on Bayesian networks

 the BN representation has many advantages

» easy to encode domain knowledge (direct dependencies,
causality)

 can represent uncertainty
« principled methods for dealing with missing values

e can answer arbitrary queries (in theory; in practice may be
Intractable)

» for supervised tasks, it may be advantageous to use a learning
approach (e.g. TAN) that focuses on the dependencies that are most
important

« although very simplistic, naive Bayes often learns highly accurate
models

* BNs are one instance of a more general class of probabilistic
graphical models



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
2 from materials developed by Mark Craven, David Rage, Jude
@b‘ Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
i

W} and Pedro Domingos.
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