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Goals for the lecture

you should understand the following concepts

• structure learning as search

• Kullback-Leibler divergence

• the Sparse Candidate algorithm

• the Tree Augmented Network (TAN) algorithm



Heuristic search for structure learning

• each state in the search space represents a DAG Bayes
net structure

• to instantiate a search approach, we need to specify

• scoring function

• state transition operators

• search algorithm



Scoring function decomposability

• when the appropriate priors are used, and all instances 

in D are complete, the scoring function can be 

decomposed as follows

• thus we can

– score a network by summing terms over the nodes in 

the network

– efficiently score changes in a local search procedure
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Scoring functions for structure learning

• Can we find a good structure just by trying to maximize the 

likelihood of the data?

• If we have a strong restriction on the the structures allowed 

(e.g. a tree), then maybe.

• Otherwise, no!  Adding an edge will never decrease 

likelihood.  Overfitting likely.
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• there are many different scoring functions for BN structure 

search

• one general approach

complexity penalty

Akaike Information Criterion (AIC): f (m) =1

Bayesian Information Criterion (BIC): f (m) =
1

2
log(m)
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Scoring functions for structure learning



Structure search operators
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at some stage of the search, 

we can…
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Bayesian network search: hill-climbing

given: data set D, initial network B0

i = 0

Bbest ←B0

while stopping criteria not met

{

for each possible operator application a

{

Bnew ← apply(a, Bi)

if score(Bnew) > score(Bbest)

Bbest ← Bnew

}

++i

Bi ← Bbest

}

return Bi



Bayesian network search: the Sparse 
Candidate algorithm [Friedman et al., UAI 1999]

given: data set D, initial network B0, parameter k

i = 0

repeat

{

++i

// restrict step

select for each variable Xj a set Cj
i of candidate parents (|Cj

i| ≤ k)

// maximize step

find network Bi maximizing score among networks where           ∀Xj, 
Parents(Xj) ⊆Cj

i

} until convergence

return Bi



• to identify candidate parents in the first iteration, can compute 

the  mutual information between pairs of variables

The restrict step in Sparse Candidate
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• Suppose:

we’re selecting two candidate parents for 

A, and   I(A, C) > I(A, D) > I(A, B)

• with mutual information, the candidate 

parents for A would be C and D

• how could we get B as a candidate parent?
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The restrict step in Sparse Candidate
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• mutual information can be thought of as the KL 

divergence between  the distributions

• Kullback-Leibler (KL) divergence provides a distance 

measure between two distributions, P and Q

P(X,Y )

P(X)P(Y ) (assumes X and Y are independent)
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The restrict step in Sparse Candidate



• we can use KL to assess the discrepancy between the 

network’s Pnet(X, Y) and the empirical P(X, Y) 

M (X,Y ) = DKL(P(X,Y )) ||Pnet (X,Y ))
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true distribution current Bayes net

DKL (P(A,B)) ||Pnet (A,B))

The restrict step in Sparse Candidate

• can estimate Pnet(X, Y) by sampling from the network (i.e. 

using it to generate instances)
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given: data set D, current network Bi, parameter k

for each variable Xj

{

calculate M(Xj , Xl ) for all Xj ≠ Xl such that Xl ∉ Parents(Xj)

choose highest ranking  X1 ... Xk-s where s= | Parents(Xj) |

// include current parents in candidate set to ensure monotonic

// improvement in scoring function

Cj
i =Parents(Xj) ∪ X1 ... Xk-s

} 

return { Cj
i } for all Xj

The restrict step in Sparse Candidate



The maximize step in Sparse Candidate

• hill-climbing search with add-edge, delete-edge,  reverse-
edge operators 

• test to ensure that cycles aren’t introduced into the graph



Efficiency of Sparse Candidate

possible parent 

sets for each node

changes scored on 

first iteration of 

search

changes scored on 

subsequent 

iterations

ordinary greedy 

search

greedy search w/at 

most k parents
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n = number of variables

after we apply an operator, the scores will change only for edges 

from the parents of the node with the new impinging edge
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Bayes nets for classification

• the learning methods for BNs we’ve discussed so far can be 
thought of as being unsupervised

• the learned models are not constructed to predict the 
value of a special class variable

• instead, they can predict values for arbitrarily selected 
query variables

• now let’s consider BN learning for a standard supervised 
task (learn a model to predict Y given X1 … Xn )



Naïve Bayes

• one very simple BN approach for supervised tasks is naïve Bayes

• in naïve Bayes, we assume that all features Xi are conditionally 
independent given the class Y
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Naïve Bayes

Learning
• estimate P(Y = y) for each value of the class variable Y
• estimate P(Xi =x | Y = y) for each Xi

XnXn-1X2X1

Y

Classification: use Bayes’ Rule
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Naïve Bayes vs. BNs learned with an 
unsupervised structure search

test-set error on 25

classification data sets from 

the UC-Irvine Repository

Figure from Friedman et al., Machine Learning 1997



The Tree Augmented Network (TAN) algorithm
[Friedman et al., Machine Learning 1997]

• learns a tree structure to augment the edges of a naïve 
Bayes network

• algorithm

1. compute weight I(Xi, Xj | Y) for each possible edge 
(Xi, Xj) between features

2. find maximum weight spanning tree (MST) for graph 
over X1 … Xn

3. assign edge directions in MST

4. construct a TAN model by adding node for Y and an 
edge from Y to each Xi



Conditional mutual information in TAN

conditional mutual information is used to calculate edge weights

“how much information Xi provides about Xj when the value of Y is known”
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Example TAN network

class variable

naïve Bayes edges

edges determined by MST 

Y



TAN vs. Chow-Liu

• TAN is focused on learning a Bayes net specifically for 
classification problems

• the MST includes only the feature variables (the class 
variable is used only for calculating edge weights)

• conditional mutual information is used instead of mutual 
information in determining edge weights in the undirected 
graph

• the directed graph determined from the MST is added to 
the Y → Xi edges that are in a naïve Bayes network



TAN vs. Naïve Bayes

test-set error on 25

data sets from the

UC-Irvine Repository

Figure from Friedman et al., Machine Learning 1997



Comments on Bayesian networks

• the BN representation has many advantages

• easy to encode domain knowledge (direct dependencies, 
causality)

• can represent uncertainty

• principled methods for dealing with missing values

• can answer arbitrary queries (in theory; in practice may be 
intractable)

• for supervised tasks, it may be advantageous to use a learning 
approach (e.g. TAN) that focuses on the dependencies that are most 
important

• although very simplistic, naïve Bayes often learns highly accurate 
models

• BNs are one instance of a more general class of probabilistic 
graphical models



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 


