Bayesian Networks Part 3

CS 760@UW-Madison
Goals for the lecture

you should understand the following concepts

• structure learning as search
• Kullback-Leibler divergence
• the Sparse Candidate algorithm

• the Tree Augmented Network (TAN) algorithm
Heuristic search for structure learning

• each state in the search space represents a DAG Bayes net structure
• to instantiate a search approach, we need to specify
 • scoring function
 • state transition operators
 • search algorithm
Scoring function decomposability

- when the appropriate priors are used, and all instances in D are complete, the scoring function can be decomposed as follows

\[\text{score}(G, D) = \sum_i \text{score}(X_i, \text{Parents}(X_i) : D) \]

- thus we can
 - score a network by summing terms over the nodes in the network
 - efficiently score changes in a *local* search procedure
Scoring functions for structure learning

• Can we find a good structure just by trying to maximize the likelihood of the data?

\[\arg \max_{G, \theta_G} \log P(D \mid G, \theta_G) \]

• If we have a strong restriction on the structures allowed (e.g. a tree), then maybe.

• Otherwise, no! Adding an edge will never decrease likelihood. Overfitting likely.
Scoring functions for structure learning

- there are many different scoring functions for BN structure search
- one general approach

\[
\arg \max_{G, \theta_G} \log P(D \mid G, \theta_G) - f(m) \mid \theta_G \mid
\]

complexity penalty

Akaike Information Criterion (AIC):

\[
f(m) = 1
\]

Bayesian Information Criterion (BIC):

\[
f(m) = \frac{1}{2} \log(m)
\]
given the current network at some stage of the search, we can…

add an edge

delete an edge

reverse an edge
Bayesian network search: *hill-climbing*

given: data set D, initial network B_0

$i = 0$

$B_{best} \leftarrow B_0$

while stopping criteria not met

{
 for each possible operator application a

 {
 $B_{new} \leftarrow \text{apply}(a, B_i)$

 if $\text{score}(B_{new}) > \text{score}(B_{best})$

 $B_{best} \leftarrow B_{new}$

 }

 ++i

 $B_i \leftarrow B_{best}$

}

return B_i
Bayesian network search: the \textit{Sparse Candidate} algorithm \cite{Friedman et al., UAI 1999}

\textbf{given:} data set D, initial network B_0, parameter k

\begin{verbatim}
 i = 0
 repeat
 {
 ++i

 // restrict step
 select for each variable X_j a set C_j^i of candidate parents ($|C_j^i| \leq k$)

 // maximize step
 find network B_i maximizing score among networks where
 $\forall X_j$, $\text{Parents}(X_j) \subseteq C_j^i$
 } until convergence
 return B_i
\end{verbatim}
The *restrict* step in Sparse Candidate

- to identify candidate parents in the first iteration, can compute the *mutual information* between pairs of variables

\[
I(X, Y) = \sum_{x \in \text{values}(X)} \sum_{y \in \text{values}(Y)} P(x, y) \log_2 \frac{P(x, y)}{P(x)P(y)}
\]
The *restrict* step in Sparse Candidate

- Suppose:

 we’re selecting two candidate parents for A, and $I(A, C) > I(A, D) > I(A, B)$

- with mutual information, the candidate parents for A would be C and D

- how could we get B as a candidate parent?
Kullback-Leibler (KL) divergence provides a distance measure between two distributions, P and Q

$$D_{KL}(P(X) \parallel Q(X)) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

mutual information can be thought of as the KL divergence between the distributions

$P(X,Y)$

$P(X)P(Y)$ (assumes X and Y are independent)

The restrict step in Sparse Candidate
The *restrict* step in Sparse Candidate

- we can use KL to assess the discrepancy between the network’s $P_{\text{net}}(X, Y)$ and the empirical $P(X, Y)$

$$M(X,Y) = D_{KL}(P(X,Y)) \| P_{\text{net}}(X,Y))$$

- can estimate $P_{\text{net}}(X, Y)$ by sampling from the network (i.e. using it to generate instances)
The \textit{restrict} step in Sparse Candidate

given: data set D, current network B_i, parameter k

for each variable X_j
{
 calculate $M(X_j, X_l)$ for all $X_j \neq X_l$ such that $X_l \notin \text{Parents}(X_j)$

 choose highest ranking $X_1 \ldots X_{k-s}$ where $s = |\text{Parents}(X_j)|$

 // include current parents in candidate set to ensure monotonic improvement in scoring function

 \[C_{j}^{i} = \text{Parents}(X_j) \cup X_1 \ldots X_{k-s} \]
}

return \{ C_{j}^{i} \} for all X_j
The *maximize* step in Sparse Candidate

- hill-climbing search with *add-edge, delete-edge, reverse-edge* operators
- test to ensure that cycles aren’t introduced into the graph
Efficiency of Sparse Candidate

$n = \text{number of variables}$

<table>
<thead>
<tr>
<th></th>
<th>possible parent sets for each node</th>
<th>changes scored on first iteration of search</th>
<th>changes scored on subsequent iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ordinary greedy search</td>
<td>$O(2^n)$</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>greedy search w/at most k parents</td>
<td>$O\left(\binom{n}{k}\right)$</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sparse Candidate</td>
<td>$O(2^k)$</td>
<td>$O(kn)$</td>
<td>$O(k)$</td>
</tr>
</tbody>
</table>

after we apply an operator, the scores will change only for edges from the parents of the node with the new impinging edge
Bayes nets for classification

• the learning methods for BNs we’ve discussed so far can be thought of as being unsupervised
 • the learned models are not constructed to predict the value of a special class variable
 • instead, they can predict values for arbitrarily selected query variables

• now let’s consider BN learning for a standard supervised task (learn a model to predict Y given $X_1 \ldots X_n$)
Naïve Bayes

- one very simple BN approach for supervised tasks is *naïve Bayes*
- in naïve Bayes, we assume that all features X_i are conditionally independent given the class Y

$$P(X_1, \ldots, X_n, Y) = P(Y) \prod_{i=1}^{n} P(X_i | Y)$$
Naïve Bayes

Learning
• estimate $P(Y = y)$ for each value of the class variable Y
• estimate $P(X_i = x \mid Y = y)$ for each X_i

Classification: use Bayes’ Rule

$$P(Y = y \mid x) = \frac{P(y)P(x \mid y)}{\sum_{y'} P(y')P(x \mid y')} = \frac{P(y)\prod_{i=1}^{n} P(x_i \mid y)}{\sum_{y'} \left(P(y')\prod_{i=1}^{n} P(x_i \mid y') \right)}$$
Naïve Bayes vs. BNs learned with an unsupervised structure search
test-set error on 25 classification data sets from the UC-Irvine Repository

Figure from Friedman et al., *Machine Learning* 1997
The Tree Augmented Network (TAN) algorithm
[Friedman et al., Machine Learning 1997]

- learns a tree structure to augment the edges of a naïve Bayes network

- algorithm
 1. compute weight $I(X_i, X_j | Y)$ for each possible edge (X_i, X_j) between features
 2. find maximum weight spanning tree (MST) for graph over $X_1 ... X_n$
 3. assign edge directions in MST
 4. construct a TAN model by adding node for Y and an edge from Y to each X_i
Conditional mutual information in TAN

conditional mutual information is used to calculate edge weights

\[
I(X_i, X_j | Y) = \sum_{x_i \in \text{values}(X_i)} \sum_{x_j \in \text{values}(X_j)} \sum_{y \in \text{values}(Y)} P(x_i, x_j, y) \log_2 \frac{P(x_i, x_j | y)}{P(x_i | y)P(x_j | y)}
\]

“how much information \(X_i\) provides about \(X_j\) when the value of \(Y\) is known”
Example TAN network

naïve Bayes edges

edges determined by MST

class variable
TAN vs. Chow-Liu

• TAN is focused on learning a Bayes net specifically for classification problems

• the MST includes only the feature variables (the class variable is used only for calculating edge weights)

• conditional mutual information is used instead of mutual information in determining edge weights in the undirected graph

• the directed graph determined from the MST is added to the $Y \rightarrow X_i$ edges that are in a naïve Bayes network
TAN vs. Naïve Bayes

test-set error on 25 data sets from the UC-Irvine Repository

Figure from Friedman et al., *Machine Learning* 1997
Comments on Bayesian networks

- The BN representation has many advantages
 - Easy to encode domain knowledge (direct dependencies, causality)
 - Can represent uncertainty
 - Principled methods for dealing with missing values
 - Can answer arbitrary queries (in theory; in practice may be intractable)
- For supervised tasks, it may be advantageous to use a learning approach (e.g. TAN) that focuses on the dependencies that are most important
- Although very simplistic, naïve Bayes often learns highly accurate models
- BNs are one instance of a more general class of probabilistic graphical models
THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.