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Goals for the lecture

you should understand the following concepts
» logistic regression
» the relationship between logistic regression and naive Bayes
« the relationship between discriminative and generative learning
« when discriminative/generative is likely to learn more accurate models



What Is logistic regression? (]
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the same as a single layer neural net with a sigmoid in which the weights are
trained to minimize
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the name is a misnomer since LR is used for classification




Nailve Bayes and logistic regression

naive Bayes logistic regression
Y

What’s the difference?
« direction of the arrows?
» whether feature/variable names are inside the ovals or outside?
* sigmoid function?
e something else?



Nalve Bayes revisited @

consider naive Bayes for a binary classification task
n
P(Y = 1)H P(x |Y =1)
( 19" n)

expanding denominator P(Y = 1)1_[ P(X Y =1)

P(YY =1|X,..,.X )=

P(Y 1)HP(X Y =1)+ P(Y = O)HP(X Y =0)

dividing everything by numerator
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Nalve Bayes revisited

applying exp(In(a)) =a

applying In(a/b) = -In(b/a)
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Nalve Bayes revisited
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Does this look familiar?
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Naive Bayes vs. logistic regression @

naive Bayes
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logistic regression
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Nalve Bayes as a neural net
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weights correspond to log ratios



Nalve Bayes vs. logistic regression @

« they have the same functional form, and thus have the same hypothesis space
bias (recall our discussion of inductive bias)

* Do they learn the same models?
In general, no. They use different methods to estimate
the model parameters.

Naive Bayes is a generative approach, whereas LR is
a discriminative one.



Generative vs. discriminative learning

generative approach
learning: estimate P(Y) and P(X,, ..., X, | Y)

classification: use Bayes’ Rule to compute P(Y | X}, ..., X))

discriminative approach

learn P(Y | X, ..., X, ) directly



Nalve Bayes vs. logistic regression
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asymptotic comparison (# training instances — ) - -

« when conditional independence assumptions made by NB are
correct, NB and LR produce identical classifiers

when conditional independence assumptions are incorrect

» logistic regression is less biased; learned weights may be able to
compensate for incorrect assumptions (e.g. what if we have two
redundant but relevant features)

» therefore LR expected to outperform NB when given lots of training
data

o



Nailve Bayes vs. logistic regression @

non-asymptotic analysis [Ng & Jordan, NIPS 2001]

« consider convergence of parameter estimates; how many training
Instances are needed to get good estimates

naive Bayes: O(log n)
logistic regression: O(n)

n = # features

* naive Bayes converges more quickly to its (perhaps less accurate)
asymptotic estimates

« therefore NB expected to outperform LR with small training sets
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Experimental comparison of NB and LR@

if = median price, continuous)

0.45

0.35

0.3

0.25

0.4}

0%

20 40 60

Ng and Jordan compared learning curves for the two approaches on 15 data
sets (some w/discrete features, some w/continuous features)



Experimental comparison of NB and LR{j

lenses (predict hard vs. soft, discrete)

logistic regression
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general trend supports theory
 NB has lower predictive error when training sets are small

» the error of LR approaches or is lower than NB when training sets are
large



Discussion

* NB/LR is one case of a pair of generative/discriminative approaches
for the same model class

* if modeling assumptions are valid (e.g. conditional independence of
features in NB) the two will produce identical classifiers in the limit (#
training instances — «)

* if modeling assumptions are not valid, the discriminative approach is
likely to be more accurate for large training sets

« for small training sets, the generative approach is likely to be more
accurate because parameters converge to their asymptotic values
more quickly (in terms of training set size)

* Q: How can we tell whether our training set size is more appropriate
for a generative or discriminative method? A: Empirically compare
the two.



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
2 from materials developed by Mark Craven, David Rage, Jude
@b‘ Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
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W} and Pedro Domingos.
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