Discriminative vs. Generative Learning

CS 760@UW-Madison
Goals for the lecture

you should understand the following concepts

- logistic regression
- the relationship between logistic regression and naïve Bayes
- the relationship between discriminative and generative learning
- when discriminative/generative is likely to learn more accurate models
What is logistic regression?

- the same as a single layer neural net with a sigmoid in which the weights are trained to minimize

$$E(w) = - \sum_{d \in D} \ln P(y^{(d)} | x^{(d)})$$

$$= \sum_{d \in D} -y^{(d)} \ln(o^{(d)}) - (1 - y^{(d)}) \ln(1 - o^{(d)})$$

- the name is a misnomer since LR is used for classification
What’s the difference?
• direction of the arrows?
• whether feature/variable names are inside the ovals or outside?
• sigmoid function?
• something else?
Naïve Bayes revisited

consider naïve Bayes for a binary classification task

\[
P(Y = 1 \mid x_1, \ldots, x_n) = \frac{P(Y = 1) \prod_{i=1}^{n} P(x_i \mid Y = 1)}{P(x_1, \ldots, x_n)}
\]

expanding denominator

\[
P(Y = 1) \prod_{i=1}^{n} P(x_i \mid Y = 1) = P(Y = 1) \prod_{i=1}^{n} P(x_i \mid Y = 1) + P(Y = 0) \prod_{i=1}^{n} P(x_i \mid Y = 0)
\]

dividing everything by numerator

\[
= \frac{1}{P(Y = 0) \prod_{i=1}^{n} P(x_i \mid Y = 0)}
\]
Naïve Bayes revisited

\[
P(Y = 1 | x_1, ..., x_n) = \frac{1}{P(Y = 0) \prod_{i=1}^{n} P(x_i | Y = 0) + 1 + \frac{P(Y = 1) \prod_{i=1}^{n} P(x_i | Y = 1)}{P(Y = 0) \prod_{i=1}^{n} P(x_i | Y = 0)}}
\]

applying \(\exp(\ln(a)) = a \)

\[
= \frac{1}{1 + \exp \left(\ln \left(\frac{P(Y = 0) \prod_{i=1}^{n} P(x_i | Y = 0)}{P(Y = 1) \prod_{i=1}^{n} P(x_i | Y = 1)} \right) \right)}
\]

applying \(\ln(a/b) = -\ln(b/a) \)

\[
= \frac{1}{1 + \exp \left(-\ln \left(\frac{P(Y = 1) \prod_{i=1}^{n} P(x_i | Y = 1)}{P(Y = 0) \prod_{i=1}^{n} P(x_i | Y = 0)} \right) \right)}
\]
Naïve Bayes revisited

\[
P(Y = 1 \mid x_1, \ldots, x_n) = \frac{1}{1 + \exp\left(-\ln\left(\frac{P(Y = 1) \prod_{i=1}^{n} P(x_i \mid Y = 1)}{P(Y = 0) \prod_{i=1}^{n} P(x_i \mid Y = 0)}\right)\right)}
\]

converting log of products to sum of logs

\[
P(Y = 1 \mid x_1, \ldots, x_n) = \frac{1}{1 + \exp\left(-\ln\left(\frac{P(Y = 1)}{P(Y = 0)}\right) - \sum_{i=1}^{n} \ln\left(\frac{P(x_i \mid Y = 1)}{P(x_i \mid Y = 0)}\right)\right)}
\]

Does this look familiar?
Naïve Bayes vs. logistic regression

naïve Bayes

\[
P(Y = 1 \mid x_1, \ldots, x_n) = \frac{1}{1 + \exp\left(-\ln\left(\frac{P(Y = 1)}{P(Y = 0)}\right) - \sum_{i=1}^{n} \ln\left(\frac{P(x_i \mid Y = 1)}{P(x_i \mid Y = 0)}\right)\right)}
\]

logistic regression

\[
f(x) = \frac{1}{1 + \exp\left(-\left(\mathbf{w}_0 + \sum_{i=1}^{n} \mathbf{w}_i x_i\right)\right)}
\]
Naïve Bayes as a neural net

\[
\ln \left(\frac{P(Y = 1)}{P(Y = 0)} \right)
\]

\[
\ln \left(\frac{P(red | Y = 1)}{P(red | Y = 0)} \right)
\]

\[
\ln \left(\frac{P(blue | Y = 1)}{P(blue | Y = 0)} \right)
\]

weights correspond to log ratios
Naïve Bayes vs. logistic regression

- they have the same functional form, and thus have the same hypothesis space bias (recall our discussion of inductive bias)

- Do they learn the same models?

 In general, no. They use different methods to estimate the model parameters.

 Naïve Bayes is a generative approach, whereas LR is a discriminative one.
Generative vs. discriminative learning

generative approach

learning: estimate $P(Y)$ and $P(X_1, \ldots, X_n \mid Y)$

classification: use Bayes’ Rule to compute $P(Y \mid X_1, \ldots, X_n)$

discriminative approach

learn $P(Y \mid X_1, \ldots, X_n)$ directly
Naïve Bayes vs. logistic regression

asymptotic comparison (# training instances $\rightarrow \infty$)
 - when conditional independence assumptions made by NB are correct, NB and LR produce identical classifiers

when conditional independence assumptions are incorrect
 - logistic regression is less biased; learned weights may be able to compensate for incorrect assumptions (e.g. what if we have two redundant but relevant features)
 - therefore LR expected to outperform NB when given lots of training data
Naïve Bayes vs. logistic regression

non-asymptotic analysis [Ng & Jordan, *NIPS* 2001]

- consider convergence of parameter estimates; how many training instances are needed to get good estimates
 - naïve Bayes: $O(\log n)$
 - logistic regression: $O(n)$
 \[n = \# \text{ features} \]

- naïve Bayes converges more quickly to its (perhaps less accurate) asymptotic estimates
- therefore NB expected to outperform LR with small training sets
Experimental comparison of NB and LR

--- logistic regression
--- naïve Bayes

Ng and Jordan compared learning curves for the two approaches on 15 data sets (some w/discrete features, some w/continuous features)
Experimental comparison of NB and LR

logistic regression

naïve Bayes

general trend supports theory

• NB has lower predictive error when training sets are small
• the error of LR approaches or is lower than NB when training sets are large
Discussion

• NB/LR is one case of a pair of generative/discriminative approaches for the same model class

• if modeling assumptions are valid (e.g. conditional independence of features in NB) the two will produce identical classifiers in the limit (# training instances $\rightarrow \infty$)

• if modeling assumptions are not valid, the discriminative approach is likely to be more accurate for large training sets

• for small training sets, the generative approach is likely to be more accurate because parameters converge to their asymptotic values more quickly (in terms of training set size)

• Q: How can we tell whether our training set size is more appropriate for a generative or discriminative method? A: Empirically compare the two.
THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.