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Goals for the lecture

you should understand the following concepts

• the margin

• the linear support vector machine

• the primal and dual formulations of SVM learning

• support vectors

• VC-dimension and maximizing the margin
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Motivation



Linear classification

(𝑤∗)𝑇𝑥 = 0

Class +1

Class -1

𝑤∗

(𝑤∗)𝑇𝑥 > 0

(𝑤∗)𝑇𝑥 < 0

Assume perfect separation between the two 

classes



Attempt

• Given training data 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷

• Hypothesis 𝑦 = sign(𝑓𝑤 𝑥 ) = sign(𝑤𝑇𝑥)
• 𝑦 = +1 if 𝑤𝑇𝑥 > 0

• 𝑦 = −1 if 𝑤𝑇𝑥 < 0

• Let’s assume that we can optimize to find 𝑤



Multiple optimal solutions?

Class +1

Class -1

𝑤2 𝑤3𝑤1

Same on empirical loss;

Different on test/expected loss



What about 𝑤1?

Class +1

Class -1

𝑤1

New test data



What about 𝑤3?

Class +1

Class -1

𝑤3

New test data



Most confident: 𝑤2

Class +1

Class -1

𝑤2

New test data



Intuition: margin

Class +1

Class -1

𝑤2

large margin



Margin



Margin

• Lemma 1: 𝑥 has distance 
|𝑓𝑤 𝑥 |

| 𝑤 |
to the hyperplane 𝑓𝑤 𝑥 =

𝑤𝑇𝑥 = 0

Proof:

• 𝑤 is orthogonal to the hyperplane

• The unit direction is 
𝑤

| 𝑤 |

• The projection of 𝑥 is 
𝑤

𝑤

𝑇

𝑥 =
𝑓𝑤(𝑥)

| 𝑤 |

𝑤

| 𝑤 |

𝑥

𝑤

𝑤

𝑇

𝑥

0



Margin: with bias

• Claim 1: 𝑤 is orthogonal to the hyperplane 𝑓𝑤,𝑏 𝑥 = 𝑤𝑇𝑥 + 𝑏 =
0

Proof:

• pick any 𝑥1 and 𝑥2 on the hyperplane

• 𝑤𝑇𝑥1 + 𝑏 = 0

• 𝑤𝑇𝑥2 + 𝑏 = 0

• So 𝑤𝑇(𝑥1 − 𝑥2) = 0



Margin: with bias

• Claim 2: 0 has distance 
|𝑏|

| 𝑤 |
to the hyperplane 𝑤𝑇𝑥 + 𝑏 = 0

Proof:

• pick any 𝑥1 the hyperplane

• Project 𝑥1 to the unit direction 
𝑤

| 𝑤 |
to get the distance

•
𝑤

𝑤

𝑇

𝑥1 =
−𝑏

| 𝑤 |
since 𝑤𝑇𝑥1 + 𝑏 = 0



Margin: with bias

• Lemma 2: 𝑥 has distance 
|𝑓𝑤,𝑏 𝑥 |

| 𝑤 |
to the hyperplane 𝑓𝑤,𝑏 𝑥 =

𝑤𝑇𝑥 + 𝑏 = 0

Proof:

• Let 𝑥 = 𝑥⊥ + 𝑟
𝑤

| 𝑤 |
, then |𝑟| is the distance

• Multiply both sides by 𝑤𝑇 and add 𝑏

• Left hand side: 𝑤𝑇𝑥 + 𝑏 = 𝑓𝑤,𝑏 𝑥

• Right hand side: 𝑤𝑇𝑥⊥ + 𝑟
𝑤𝑇𝑤

| 𝑤 |
+ 𝑏 = 0 + 𝑟| 𝑤 |



𝑦 𝑥 = 𝑤𝑇𝑥 + 𝑤0

The notation here is:

Figure from Pattern Recognition 

and Machine Learning, Bishop



Support Vector Machine (SVM)



SVM: objective

• Margin over all training data points:

𝛾 = min
𝑖

|𝑓𝑤,𝑏 𝑥𝑖 |

| 𝑤 |

• Since only want correct 𝑓𝑤,𝑏, and recall 𝑦𝑖 ∈ {+1,−1}, we have

𝛾 = min
𝑖

𝑦𝑖𝑓𝑤,𝑏 𝑥𝑖
| 𝑤 |

• If 𝑓𝑤,𝑏 incorrect on some 𝑥𝑖, the margin is negative



SVM: objective

• Maximize margin over all training data points:

max
𝑤,𝑏

𝛾 = max
𝑤,𝑏

min
𝑖

𝑦𝑖𝑓𝑤,𝑏 𝑥𝑖
| 𝑤 |

= max
𝑤,𝑏

min
𝑖

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏)

| 𝑤 |

• A bit complicated …



SVM: simplified objective

• Observation: when (𝑤, 𝑏) scaled by a factor 𝑐, the margin 
unchanged

𝑦𝑖(𝑐𝑤
𝑇𝑥𝑖 + 𝑐𝑏)

| 𝑐𝑤 |
=
𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏)

| 𝑤 |

• Let’s consider a fixed scale such that

𝑦𝑖∗ 𝑤
𝑇𝑥𝑖∗ + 𝑏 = 1

where 𝑥𝑖∗ is the point closest to the hyperplane



SVM: simplified objective

• Let’s consider a fixed scale such that

𝑦𝑖∗ 𝑤
𝑇𝑥𝑖∗ + 𝑏 = 1

where 𝑥𝑖∗ is the point closet to the hyperplane

• Now we have for all data
𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 ≥ 1

and at least for one 𝑖 the equality holds

• Then the margin is 
1

| 𝑤 |



SVM: simplified objective

• Optimization simplified to

min
𝑤,𝑏

1

2
𝑤

2

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖

• How to find the optimum ෝ𝑤∗?

• Solved by Lagrange multiplier method



Lagrange multiplier



Lagrangian

• Consider optimization problem:
min
𝑤

𝑓(𝑤)

ℎ𝑖 𝑤 = 0, ∀1 ≤ 𝑖 ≤ 𝑙

• Lagrangian:

ℒ 𝑤,𝜷 = 𝑓 𝑤 +෍

𝑖

𝛽𝑖ℎ𝑖(𝑤)

where 𝛽𝑖 ’s are called Lagrange multipliers



Lagrangian

• Consider optimization problem:
min
𝑤

𝑓(𝑤)

ℎ𝑖 𝑤 = 0, ∀1 ≤ 𝑖 ≤ 𝑙

• Solved by setting derivatives of Lagrangian to 0

𝜕ℒ

𝜕𝑤𝑖
= 0;

𝜕ℒ

𝜕𝛽𝑖
= 0



Generalized Lagrangian

• Consider optimization problem:
min
𝑤

𝑓(𝑤)

𝑔𝑖 𝑤 ≤ 0, ∀1 ≤ 𝑖 ≤ 𝑘

ℎ𝑗 𝑤 = 0, ∀1 ≤ 𝑗 ≤ 𝑙

• Generalized Lagrangian:

ℒ 𝑤,𝜶, 𝜷 = 𝑓 𝑤 +෍

𝑖

𝛼𝑖𝑔𝑖(𝑤) +෍

𝑗

𝛽𝑗ℎ𝑗(𝑤)

where 𝛼𝑖 , 𝛽𝑗 ’s are called Lagrange multipliers



Generalized Lagrangian

• Consider the quantity:

𝜃𝑃 𝑤 ≔ max
𝜶,𝜷:𝛼𝑖≥0

ℒ 𝑤, 𝜶, 𝜷

• Why?

𝜃𝑃 𝑤 = ቊ
𝑓 𝑤 , if 𝑤 satisfies all the constraints

+∞, if 𝑤 does not satisfy the constraints

• So minimizing 𝑓 𝑤 is the same as minimizing 𝜃𝑃 𝑤

min
𝑤

𝑓 𝑤 = min
𝑤

𝜃𝑃 𝑤 = min
𝑤

max
𝜶,𝜷:𝛼𝑖≥0

ℒ 𝑤,𝜶, 𝜷



Lagrange duality

• The primal problem

𝑝∗ ≔ min
𝑤

𝑓 𝑤 = min
𝑤

max
𝜶,𝜷:𝛼𝑖≥0

ℒ 𝑤,𝜶, 𝜷

• The dual problem

𝑑∗ ≔ max
𝜶,𝜷:𝛼𝑖≥0

min
𝑤

ℒ 𝑤,𝜶, 𝜷

• Always true:
𝑑∗ ≤ 𝑝∗



Lagrange duality

• The primal problem

𝑝∗ ≔ min
𝑤

𝑓 𝑤 = min
𝑤

max
𝜶,𝜷:𝛼𝑖≥0

ℒ 𝑤,𝜶, 𝜷

• The dual problem

𝑑∗ ≔ max
𝜶,𝜷:𝛼𝑖≥0

min
𝑤

ℒ 𝑤,𝜶, 𝜷

• Interesting case: when do we have 
𝑑∗ = 𝑝∗?



Lagrange duality

• Theorem: under proper conditions, there exists 𝑤∗, 𝜶∗, 𝜷∗

such that

𝑑∗ = ℒ 𝑤∗, 𝜶∗, 𝜷∗ = 𝑝∗

Moreover, 𝑤∗, 𝜶∗, 𝜷∗ satisfy Karush-Kuhn-Tucker (KKT) 
conditions:

𝜕ℒ

𝜕𝑤𝑖
= 0, 𝛼𝑖𝑔𝑖 𝑤 = 0

𝑔𝑖 𝑤 ≤ 0, ℎ𝑗 𝑤 = 0, 𝛼𝑖 ≥ 0



Lagrange duality

• Theorem: under proper conditions, there exists 𝑤∗, 𝜶∗, 𝜷∗

such that

𝑑∗ = ℒ 𝑤∗, 𝜶∗, 𝜷∗ = 𝑝∗

Moreover, 𝑤∗, 𝜶∗, 𝜷∗ satisfy Karush-Kuhn-Tucker (KKT) 
conditions:

𝜕ℒ

𝜕𝑤𝑖
= 0, 𝛼𝑖𝑔𝑖 𝑤 = 0

𝑔𝑖 𝑤 ≤ 0, ℎ𝑗 𝑤 = 0, 𝛼𝑖 ≥ 0

dual 

complementarity



Lagrange duality

• Theorem: under proper conditions, there exists 𝑤∗, 𝜶∗, 𝜷∗

such that

𝑑∗ = ℒ 𝑤∗, 𝜶∗, 𝜷∗ = 𝑝∗

• Moreover, 𝑤∗, 𝜶∗, 𝜷∗ satisfy Karush-Kuhn-Tucker (KKT) 
conditions:

𝜕ℒ

𝜕𝑤𝑖
= 0, 𝛼𝑖𝑔𝑖 𝑤 = 0

𝑔𝑖 𝑤 ≤ 0, ℎ𝑗 𝑤 = 0, 𝛼𝑖 ≥ 0

dual constraintsprimal constraints



Lagrange duality

• What are the proper conditions? 

• A set of conditions (Slater conditions):
• 𝑓, 𝑔𝑖 convex, ℎ𝑗 affine, and exists 𝑤 satisfying all 𝑔𝑖 𝑤 < 0

• There exist other sets of conditions
• Check textbooks, e.g.,  Convex Optimization by Boyd and 

Vandenberghe



SVM: optimization



SVM: optimization

• Optimization (Quadratic Programming):

min
𝑤,𝑏

1

2
𝑤

2

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖

• Generalized Lagrangian:

ℒ 𝑤, 𝑏, 𝜶 =
1

2
𝑤

2

−෍

𝑖

𝛼𝑖[𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 − 1]

where 𝜶 is the Lagrange multiplier



SVM: optimization

• KKT conditions:
𝜕ℒ

𝜕𝑤
= 0,→ 𝑤 = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖 (1)

𝜕ℒ

𝜕𝑏
= 0,→ 0 = σ𝑖 𝛼𝑖𝑦𝑖 (2)

• Plug into ℒ:

ℒ 𝑤, 𝑏, 𝜶 = σ𝑖 𝛼𝑖 −
1

2
σ𝑖𝑗 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗 (3)

combined with 0 = σ𝑖 𝛼𝑖𝑦𝑖 , 𝛼𝑖 ≥ 0



SVM: optimization

• Reduces to dual problem:

ℒ 𝑤, 𝑏, 𝜶 =෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0

• Since 𝑤 = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖, we have 𝑤𝑇𝑥 + 𝑏 = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖
𝑇𝑥 + 𝑏

Only depend on inner 

products



Support Vectors

• those instances with αi > 0
are called support vectors 
• they lie on the margin 

boundary

• solution NOT changed if 
delete the instances with αi = 
0 support 

vectors

• final solution is a sparse linear combination of the training 

instances



Learning theory justification

• Vapnik showed a connection between the margin and VC 
dimension

𝑉𝐶 ≤
4𝑅2

𝑚𝑎𝑟𝑔𝑖𝑛𝐷(ℎ)

• thus to minimize the VC dimension (and to improve the error 
bound) ➔ maximize the margin

error on true

distribution

training set

error VC: VC-dimension

of hypothesis class

𝑒𝑟𝑟𝑜𝑟 ℎ ≤ 𝑒𝑟𝑟𝑜𝑟𝐷 ℎ +
𝑉𝐶 log

2𝑚
𝑉𝐶

+ 1 + log
4
𝛿

𝑚

constant dependent on training data



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 


