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Goals for the lecture

you should understand the following concepts

• soft margin SVM

• support vector regression

• the kernel trick

• polynomial kernel

• Gaussian/RBF kernel

• valid kernels and Mercer’s theorem

• kernels and neural networks
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Variants: soft-margin and SVR



Hard-margin SVM

• Optimization (Quadratic Programming):

min
𝑤,𝑏

1

2
𝑤

2

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖



Soft-margin SVM [Cortes & Vapnik, Machine Learning 1995]

• if the training instances are not linearly separable, the previous 
formulation will fail

• we can adjust our approach by using slack variables (denoted 
by 𝜁𝑖) to tolerate errors

min
𝑤,𝑏,𝜁𝑖

1

2
𝑤

2

+ 𝐶෍

𝑖

𝜁𝑖

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜁𝑖 , 𝜁𝑖 ≥ 0, ∀𝑖

• 𝐶 determines the relative importance of maximizing margin vs. 
minimizing slack



The effect of 𝐶 in soft-margin SVM

Figure from Ben-Hur & Weston, 

Methods in Molecular Biology 2010



Hinge loss

• when we covered neural nets, we talked about minimizing 
squared loss and cross-entropy loss

• SVMs minimize hinge loss

loss (error) 

when  𝑦 = 1

model output ℎ 𝒙

squared loss

0/1 loss

hinge loss



Support Vector Regression 

• the SVM idea can also be 
applied in regression tasks

• an 𝜖-insensitive error 
function specifies that a 
training instance is well 
explained if the model’s 
prediction is within 𝜖 of 𝑦𝑖

(𝑤⊤𝑥 + 𝑏) − 𝑦 = 𝜖

𝑦 − (𝑤⊤𝑥 + 𝑏) = 𝜖



Support Vector Regression

• Regression using slack variables (denoted by 𝜁𝑖 , 𝜉𝑖) to tolerate 
errors

min
𝑤,𝑏,𝜁𝑖,𝜉𝑖

1

2
𝑤

2

+ 𝐶෍

𝑖

𝜁𝑖 + 𝜉𝑖

𝑤𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜁𝑖 ,
𝑦𝑖 − 𝑤𝑇𝑥𝑖 + 𝑏 ≤ 𝜖 + 𝜉𝑖 ,

𝜁𝑖 , 𝜉𝑖 ≥ 0.

slack variables allow predictions

for some training instances to be

off by more than 𝜖



Kernel methods



Features

Color Histogram

Red Green

Extract 

features

𝑥 𝜙 𝑥



Features

Proper feature mapping can make non-linear to linear!



Recall: SVM dual form

• Reduces to dual problem:

ℒ 𝑤, 𝑏, 𝜶 = ෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0

• Since 𝑤 = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖, we have 𝑤𝑇𝑥 + 𝑏 = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖
𝑇𝑥 + 𝑏

Only depend on inner 

products



Features

• Using SVM on the feature space {𝜙 𝑥𝑖 }: only need 𝜙 𝑥𝑖
𝑇𝜙(𝑥𝑗)

• Conclusion: no need to design 𝜙 ⋅ , only need to design 

𝑘 𝑥𝑖 , 𝑥𝑗 = 𝜙 𝑥𝑖
𝑇𝜙(𝑥𝑗)



Polynomial kernels

• Fix degree 𝑑 and constant 𝑐:
𝑘 𝑥, 𝑥′ = 𝑥𝑇𝑥′ + 𝑐 𝑑

• What are 𝜙(𝑥)?

• Expand the expression to get 𝜙(𝑥)



Polynomial kernels

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar



SVMs with polynomial kernels

Figure from Ben-Hur & Weston, 

Methods in Molecular Biology 2010
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Gaussian/RBF kernels 

• Fix bandwidth 𝜎:

𝑘 𝑥, 𝑥′ = exp(− 𝑥 − 𝑥′
2
/2𝜎2)

• Also called radial basis function (RBF) kernels

• What are 𝜙(𝑥)? Consider the un-normalized version
𝑘′ 𝑥, 𝑥′ = exp(𝑥𝑇𝑥′/𝜎2)

• Power series expansion: 

𝑘′ 𝑥, 𝑥′ = ෍

𝑖

+∞
𝑥𝑇𝑥′ 𝑖

𝜎𝑖𝑖!



The RBF kernel illustrated

Figures from openclassroom.stanford.edu (Andrew Ng)

20

𝛾 = −10 𝛾 = −100 𝛾 = −1000



Mercer’s condition for kenerls

• Theorem: 𝑘 𝑥, 𝑥′ has expansion 

𝑘 𝑥, 𝑥′ = ෍

𝑖

+∞

𝑎𝑖𝜙𝑖 𝑥 𝜙𝑖(𝑥
′)

if and only if for any function 𝑐(𝑥),

∫ ∫ 𝑐 𝑥 𝑐 𝑥′ 𝑘 𝑥, 𝑥′ 𝑑𝑥𝑑𝑥′ ≥ 0

(Omit some math conditions for 𝑘 and 𝑐)



Constructing new kernels

• Kernels are closed under positive scaling, sum, product, 
pointwise limit, and composition with a power series 
σ𝑖
+∞𝑎𝑖𝑘

𝑖(𝑥, 𝑥′)

• Example: 𝑘1 𝑥, 𝑥′ , 𝑘2 𝑥, 𝑥′ are kernels, then also is

𝑘 𝑥, 𝑥′ = 2𝑘1 𝑥, 𝑥′ + 3𝑘2 𝑥, 𝑥′

• Example: 𝑘1 𝑥, 𝑥′ is kernel, then also is

𝑘 𝑥, 𝑥′ = exp(𝑘1 𝑥, 𝑥′ )



Kernel algebra

• given a valid kernel, we can make new valid kernels using a variety of 

operators

f(x) = fa(x),  fb(x)( )k(x,v) = ka(x,v)+ kb(x,v)

k(x,v) = g  ka(x,v),  g > 0 f(x) = g  fa(x)

k(x,v) = ka(x,v)kb(x,v) fl (x) =fai(x)fbj (x)

k(x,v) = f (x) f (v)ka(x,v) f(x) = f (x)fa(x)

kernel composition mapping composition
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Kernels v.s. Neural networks



Features

Color Histogram

Red Green

Extract 

features

𝑥

𝑦 = 𝑤𝑇𝜙 𝑥
build 

hypothesis



Features: part of the model

𝑦 = 𝑤𝑇𝜙 𝑥
build 

hypothesis

Linear model

Nonlinear model



Polynomial kernels

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar



Polynomial kernel SVM as two layer neural network

𝑥1

𝑥2

𝑥1
2

𝑥2
2

2𝑥1𝑥2

2𝑐𝑥1

2𝑐𝑥2

𝑐

𝑦 = sign(𝑤𝑇𝜙(𝑥) + 𝑏)

First layer is fixed. If also learn first layer, it becomes two layer neural network 



Comments on SVMs

• we can find solutions that are globally optimal (maximize the margin)

• because the learning task is framed as a convex optimization 

problem

• no local minima, in contrast to multi-layer neural nets

• there are two formulations of the optimization: primal and dual

• dual represents classifier decision in terms of support vectors

• dual enables the use of kernel functions

• we can use a wide range of optimization methods to learn SVM

• standard quadratic programming solvers

• SMO [Platt, 1999]

• linear programming solvers for some formulations

• etc.
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• kernels provide a powerful way to

• allow nonlinear decision boundaries

• represent/compare complex objects such as strings and trees

• incorporate domain knowledge into the learning task

• using the kernel trick, we can implicitly use high-dimensional mappings 
without explicitly computing them

• one SVM can represent only a binary classification task; multi-class 
problems handled using multiple SVMs and some encoding

• empirically, SVMs have shown (close to) state-of-the art accuracy for  many 
tasks

• the kernel idea can be extended to other tasks (anomaly detection, 
regression, etc.)
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Comments on SVMs



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 


