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Goals for the lecture

you should understand the following concepts

soft margin SVM

support vector regression

the kernel trick

polynomial kernel

Gaussian/RBF kernel

valid kernels and Mercer’s theorem
kernels and neural networks



Variants: soft-margin and SVR



Hard-margin SVM

* Optimization (Quadratic Programming):
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SOft'marg | n SVM [Cortes & Vapnik, Machine Learning 1995] @

« if the training instances are not linearly separable, the previous
formulation will fail

« we can adjust our approach by using slack variables (denoted
by (;) to tolerate errors
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* C determines the relative importance of maximizing margin vs.
minimizing slack



The effect of C In soft-margin SVM
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Figure from Ben-Hur & Weston,
Methods in Molecular Biology 2010



Hinge loss

« when we covered neural nets, we talked about minimizing
squared loss and cross-entropy loss

« SVMs minimize hinge loss
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Support Vector Regression

» the SVM idea can also be
applied in regression tasks wWix+b)—y=¢

 an e-insensitive error
function specifies that a
training instance is well
explained if the model’s
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Support Vector Regression @

« Regression using slack variables (denoted by ¢;, ¢;) to tolerate
errors
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slack variables allow predictions
for some training instances to be
off by more than ¢



Kernel methods



Features
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Features
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Proper feature mapping can make non-linear to linear!



Recall: SVM dual form

Only depend on inner
- Reduces to dual problem: : products

i ij

Zaiyi = O,ai >0
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« Sincew =Y, a;y;x;, we have w'x + b =Y, a;y;x/ x + b



Features @

« Using SVM on the feature space {¢(x;)}: only need ¢(Xi)T¢(xj)

» Conclusion: no need to design ¢(-), only need to design

k(x, %) = p(x)T P (x))



Polynomial kernels

 Fix degree d and constant c:

k(x,x") = (xTx' + ¢)¢
 What are ¢ (x)?
« Expand the expression to get ¢ (x)



Polynomial kernels @
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Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar
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SVMs with polynomial kernels

linear kernel polynomial degree 2 polynomial degree 5

Figure from Ben-Hur & Weston,
Methods in Molecular Biology 2010
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Gaussian/RBF kernels

 Fix bandwidth o
2
k(x,x") = exp(—|lx — x'||"/26?)
« Also called radial basis function (RBF) kernels

* What are ¢ (x)? Consider the un-normalized version
k'(x,x") = exp(xTx'/5?)

* Power series expansion:
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The RBF kernel illustrated

Figures from openclassroom.stanford.edu (Andrew Ng)




Mercer’s condition for kenerls

 Theorem: k(x, x") has expan+soioon

k(x,x") = 2 a;¢;(x)p;(x")

l

If and only if for any function c(x),

[ c()ec(xk(x,x)dxdx' =0

(Omit some math conditions for k and c)



Constructing new kernels

» Kernels are closed under positive scaling, sum, product,
pointwise limit, and composition with a power series
X7 agkt (x,x")

« Example: k,(x,x"), k,(x,x") are kernels, then also is

k(x,x") = 2k{(x,x") + 3k,(x,x")

« Example: k,(x, x") is kernel, then also is

k(x,x") = exp(k{(x,x"))



Kernel algebra

« given a valid kernel, we can make new valid kernels using a variety of
operators

kernel composition mapping composition
k(x,v) = k, (x,v) + k, (x,v) flx) = (7, (x), £,(x))
k(x,v) =9 k,(x,v), g >0 fix)=\g f,(x)

k(x,v) = k,(x,v)k, (x,v) f,(x) = £,(x)F,(x)
k(x,v)=x"Av, Aisp.sd. ¢(x)=L'x, where A= LL'

k(x,v) = f(x)f(v)k,(x,) flx) = f(x)7,(x)



Kernels v.s. Neural networks



Features @
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Features: part of the model @

Nonlinear model
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Polynomial kernels @
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Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar




Polynomial kernel SVM as two layer neural network @

y = sign(w! ¢ (x) + b)

First layer is fixed. If also learn first layer, it becomes two layer neural network



Comments on SVMs

« we can find solutions that are globally optimal (maximize the margin)

» because the learning task is framed as a convex optimization
problem

* no local minima, in contrast to multi-layer neural nets

 there are two formulations of the optimization: primal and dual

 dual represents classifier decision in terms of support vectors
» dual enables the use of kernel functions

* we can use a wide range of optimization methods to learn SVM
« standard quadratic programming solvers
« SMO [Platt, 1999]

* linear programming solvers for some formulations
* etc.
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Comments on SVMs

 kernels provide a powerful way to
« allow nonlinear decision boundaries
* represent/compare complex objects such as strings and trees
* incorporate domain knowledge into the learning task

« using the kernel trick, we can implicitly use high-dimensional mappings
without explicitly computing them

» one SVM can represent only a binary classification task; multi-class
problems handled using multiple SVMs and some encoding

« empirically, SVMs have shown (close to) state-of-the art accuracy for many
tasks

* the kernel idea can be extended to other tasks (anomaly detection,
regression, etc.)
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THANK YOU

Some of the slides in these lectures have been adapted/borrowed
2 from materials developed by Mark Craven, David Rage, Jude
@b‘ Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
i

W} and Pedro Domingos.
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