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Goals for the lecture

you should understand the following concepts

• value functions and value iteration (review)

• Q functions and Q learning (review)

• exploration vs. exploitation tradeoff

• compact representations of Q functions

• reinforcement learning example
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Value function for a policy

• given a policy π : S → A define

assuming action sequence chosen

according to π starting at state s

• we want the optimal policy π* where

 
p * = argmaxp V

p (s)   for all s

we’ll denote the value function for this optimal policy as V*(s)
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Value iteration for learning V*(s)

initialize V(s) arbitrarily

loop until policy good enough

{

loop for s ∈ S

{

loop for a ∈ A

{

}

}

}
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Q learning

define a new function, closely related to V*

if agent knows Q(s, a), it can choose optimal action without knowing P(s’ | 

s, a) 

and it can learn Q(s, a) without knowing P(s’ | s, a) 
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Q learning for deterministic worlds

for each s, a initialize table entry

observe current state s

do forever

select an action a and execute it

receive immediate reward r

observe the new state s’

update table entry

s ← s’
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Q learning for nondeterministic worlds

for each s, a initialize table entry

observe current state s

do forever

select an action a and execute it

receive immediate reward r

observe the new state s’

update table entry

s ← s’

 

an =
1

1+ visitsn(s,a)

where αn is a parameter dependent

on the number of visits to the given

(s, a) pair

7

0),(ˆ asQ

 )','(ˆmax),(ˆ)1(),(ˆ
1'1 asQrasQasQ nannnn −− ++− 



Q’s vs. V’s 

• Which action do we choose when we’re in a given state?

• V’s (model-based)

• need to have a ‘next state’ function to generate all possible 
states

• choose next state with highest V value.

• Q’s (model-free)

• need only know which actions are legal

• generally choose next state with highest Q value.

V V

V

Q

Q
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Exploration vs. Exploitation

• in order to learn about better alternatives, we shouldn’t always follow 
the current policy (exploitation)

• sometimes, we should select random actions (exploration)

• one way to do this: select actions probabilistically according to:

where c > 0 is a constant that determines how strongly selection 
favors actions with higher Q values
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Q learning with a table

As described so far, Q learning entails filling in a huge table

A table is a very 

verbose way to

represent a function

s0 s1 s2 . . .           sn

a1

a2

a3

.

.

.

ak

. . . Q(s2, a3)

.

.

.

actions

states
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Q(s, a1)

Q(s, a2)

Q(s, ak)

Representing Q functions more compactly

We can use some other function representation (e.g. a neural net) 
to compactly encode a substitute for the big table

encoding of 

the state (s)

or could have one net

for each possible action

each input unit encodes 

a property of the state 

(e.g., a sensor value)
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Why use a compact Q function?

1. Full Q table may not fit in memory for realistic problems

2. Can generalize across states,  thereby speeding up 
convergence

i.e. one instance ‘fills’ many cells in the Q table

Notes

1. When generalizing across states, cannot use α=1

2. Convergence proofs only apply to Q tables

3. Some work on bounding errors caused by using compact 
representations   (e.g. Singh & Yee, Machine Learning 1994)
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Given: 100 Boolean-valued features

10 possible actions

Size of Q table

10 × 2100 entries

Size of Q net (assume 100 hidden units)

100 × 100   +  100 × 10 = 11,000 weights

Q tables vs. Q nets

weights between 

inputs and HU’s
weights between 

HU’s and outputs 
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Representing Q functions more compactly

• we can use other regression methods to represent Q functions

k-NN

regression trees

support vector regression

etc.
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Q learning with function approximation

1. measure sensors, sense state s0

2. predict                 for each action a

3. select action a to take (with randomization to ensure 

exploration)

4. apply action a in the real world

5. sense new state s1 and immediate reward r

6. calculate action a’ that maximizes

7. train with new instance

Q̂n(s0,a)

Q̂n(s1,a ')
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Calculate Q-value you would have put into Q-table, and use 

it as the training label 



ML example: reinforcement learning to control 
an autonomous helicopter

video of Stanford University autonomous helicopter from http://heli.stanford.edu/
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Stanford autonomous helicopter

sensing the helicopter’s state

• orientation sensor

accelerometer

rate gyro

magnetometer

• GPS receiver (“2cm accuracy as long as its antenna is pointing 

towards the sky”)

• ground-based cameras

actions to control the helicopter



1. Expert pilot demonstrates the airshow several times

2. Learn a reward function based on desired trajectory

3. Learn a dynamics model

4. Find the optimal control policy for learned reward and dynamics 
model

5. Autonomously fly the airshow

6. Learn an improved dynamics model.  Go back to step 4

Experimental setup for helicopter



Learning dynamics model P(st+1 | st,  a)

• state represented by helicopter’s

x,y,z( )

w x ,w y,w z( )

u1,u2,u3,u4( )

• action represented by manipulations of 4 controls 

position

velocity

angular velocity

• dynamics model predicts accelerations as a function of current state 

and  actions

• accelerations are integrated to compute the predicted next state



Learning dynamics model P(st+1 | st,  a)

• A, B, C, D represent model parameters

• g represents gravity vector

• w’s are random variables representing noise and unmodeled effects

• linear regression task!

dynamics

model



Learning a desired trajectory

• repeated expert demonstrations are often suboptimal in different ways

• given a set of M demonstrated trajectories

state on jth step of trajectory kaction on jth step of trajectory k

• try to infer the implicit desired trajectory
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Learning a desired trajectory

Figure from Coates et al.,CACM 2009 

colored lines: demonstrations of two loops

black line: inferred trajectory



Learning reward function

• EM is used to infer desired trajectory from set of demonstrated 

trajectories

• The reward function is based on deviations from the desired trajectory



Finding the optimal control policy

• finding the control policy is a reinforcement learning task

• RL learning methods described earlier don’t quite apply because state and 

action spaces are both continuous

• A special type of Markov decision process in which the optimal policy can be 

found efficiently

• reward is represented as a linear function of state and action vectors

• next state is represented as a linear function of current state and action 

vectors

• They use an iterative approach that finds an approximate solution  because the 

reward function used is quadratic
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THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 


