Goals for the lecture

you should understand the following concepts

• value functions and value iteration (review)
• Q functions and Q learning (review)
• exploration vs. exploitation tradeoff
• compact representations of Q functions
• reinforcement learning example
Value function for a policy

• given a policy $\pi : S \rightarrow A$ define

$$V^\pi (s) = \sum_{t=0}^{\infty} \gamma^t E[r_t]$$

assuming action sequence chosen according to π starting at state s

• we want the optimal policy π^* where

$$* = \arg \max \ V^* (s) \ \text{for all} \ s$$

we’ll denote the value function for this optimal policy as $V^*(s)$
Value iteration for learning $V^*(s)$

initialize $V(s)$ arbitrarily

loop until policy good enough

\{
 loop for $s \in S$
 \{
 loop for $a \in A$
 \{
 $Q(s, a) \leftarrow r(s, a) + \gamma \sum_{s' \in S} P(s'| s, a)V(s')$
 \}
 $V(s) \leftarrow \max_a Q(s, a)$
 \}
\}
Q learning

define a new function, closely related to V^*

\[
V^*(s) \leftarrow E[r(s, \pi^*(s))] + \gamma E_{s'|s, \pi^*(s)}[V^*(s')]
\]

\[
Q(s, a) \leftarrow E[r(s, a)] + \gamma E_{s'|s, a}[V^*(s')]
\]

if agent knows $Q(s, a)$, it can choose optimal action without knowing $P(s' | s, a)$

\[
\pi^*(s) \leftarrow \text{arg max}_a Q(s, a) \quad V^*(s) \leftarrow \text{max}_a Q(s, a)
\]

and it can learn $Q(s, a)$ without knowing $P(s' | s, a)$
for each s, a initialize table entry $Q(s, a) \leftarrow 0$
observe current state s
do forever
select an action a and execute it
receive immediate reward r
observe the new state s'
update table entry
$$Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$$
$s \leftarrow s'$
for each \(s, a \) initialize table entry \(\hat{Q}(s,a) \leftarrow 0 \)

observe current state \(s \)

do forever

select an action \(a \) and execute it

receive immediate reward \(r \)

observe the new state \(s' \)

update table entry

\[
\hat{Q}_n(s,a) \leftarrow (1 - \alpha_n)\hat{Q}_{n-1}(s,a) + \alpha_n[r + \gamma \max_a \hat{Q}_{n-1}(s',a')]
\]

\(s \leftarrow s' \)

where \(\alpha_n \) is a parameter dependent on the number of visits to the given \((s, a)\) pair

\[
n = \frac{1}{1 + \text{visits}_n(s,a)}
\]
Q’s vs. V’s

• Which action do we choose when we’re in a given state?
• V’s (model-based)
 • need to have a ‘next state’ function to generate all possible states
 • choose next state with highest V value.
• Q’s (model-free)
 • need only know which actions are legal
 • generally choose next state with highest Q value.
Exploration vs. Exploitation

• in order to learn about better alternatives, we shouldn’t always follow the current policy (exploitation)

• sometimes, we should select random actions (exploration)

• one way to do this: select actions probabilistically according to:

\[P(a_i \mid s) = \frac{c \hat{Q}(s,a_i)}{\sum_j c \hat{Q}(s,a_j)} \]

where \(c > 0 \) is a constant that determines how strongly selection favors actions with higher \(Q \) values
As described so far, Q learning entails filling in a huge table.

A table is a very verbose way to represent a function.
Representing Q functions more compactly

We can use some other function representation (e.g. a neural net) to **compactly** encode a substitute for the big table.

encoding of the state (s)

- each input unit encodes a property of the state (e.g., a sensor value)
- or could have one net for each possible action
Why use a compact Q function?

1. Full Q table may not fit in memory for realistic problems
2. Can generalize across states, thereby speeding up convergence
 i.e. one instance ‘fills’ many cells in the Q table

Notes
1. When generalizing across states, cannot use $\alpha=1$
2. Convergence proofs only apply to Q tables
3. Some work on bounding errors caused by using compact representations (e.g. Singh & Yee, Machine Learning 1994)
\(Q \) tables vs. \(Q \) nets

Given: 100 Boolean-valued features
10 possible actions

Size of \(Q \) table
\[10 \times 2^{100} \text{ entries} \]

Size of \(Q \) net (assume 100 hidden units)
\[100 \times 100 + 100 \times 10 = 11,000 \text{ weights} \]

weights between inputs and HU’s
weights between HU’s and outputs
Representing Q functions more compactly

• we can use other regression methods to represent Q functions
 k-NN
 regression trees
 support vector regression
 etc.
1. measure sensors, sense state s_0
2. predict $\hat{Q}_n(s_0, a)$ for each action a
3. select action a to take (with randomization to ensure exploration)
4. apply action a in the real world
5. sense new state s_1 and immediate reward r
6. calculate action a' that maximizes $\hat{Q}_n(s_1, a')$
7. train with new instance

$$\mathbf{x} = s_0$$

$$y \leftarrow (1 - \alpha)\hat{Q}(s_0, a) + \alpha \left[r + \gamma \max_{a'} \hat{Q}(s_1, a') \right]$$

Calculate Q-value you would have put into Q-table, and use it as the training label
ML example: reinforcement learning to control an autonomous helicopter

video of Stanford University autonomous helicopter from http://heli.stanford.edu/
sensing the helicopter’s state

- orientation sensor
 - accelerometer
 - rate gyro
 - magnetometer
- GPS receiver ("2cm accuracy as long as its antenna is pointing towards the sky")
- ground-based cameras

actions to control the helicopter
1. Expert pilot demonstrates the airshow several times
2. Learn a reward function based on desired trajectory
3. Learn a dynamics model
4. Find the optimal control policy for learned reward and dynamics model
5. Autonomously fly the airshow
6. Learn an improved dynamics model. Go back to step 4
Learning dynamics model $P(s_{t+1} \mid s_t, a)$

- state represented by helicopter’s
 - position (x, y, z)
 - velocity $(\dot{x}, \dot{y}, \dot{z})$
 - angular velocity $\begin{pmatrix} x', y', z' \end{pmatrix}$

- action represented by manipulations of 4 controls
 $\begin{pmatrix} u_1, u_2, u_3, u_4 \end{pmatrix}$

- dynamics model predicts accelerations as a function of current state and actions
- accelerations are integrated to compute the predicted next state
Learning dynamics model $P(s_{t+1} \mid s_t, a)$

\[
\begin{align*}
\ddot{x}^b &= A_x \dot{x}^b + g_x + w_x, \\
\ddot{y}^b &= A_y \dot{y}^b + g_y + D_0 + w_y, \\
\ddot{z}^b &= A_z \dot{z}^b + g_z + C_4 u_4 + D_4 + w_z, \\
\dot{\omega}_x^b &= B_x \omega_x^b + C_1 u_1 + D_1 + w_{\omega_x}, \\
\dot{\omega}_y^b &= B_y \omega_y^b + C_2 u_2 + D_2 + w_{\omega_y}, \\
\dot{\omega}_z^b &= B_z \omega_z^b + C_3 u_3 + D_3 + w_{\omega_z}.
\end{align*}
\]

- A, B, C, D represent model parameters
- g represents gravity vector
- w’s are random variables representing noise and unmodeled effects

- linear regression task!
Learning a desired trajectory

- repeated expert demonstrations are often suboptimal in different ways
- given a set of M demonstrated trajectories

$$
y^k_j = \begin{bmatrix} s^k_j \\ u^k_j \end{bmatrix} \quad \text{for } j = 0, \ldots, N - 1, k = 0, \ldots, M - 1$$

action on j^{th} step of trajectory k

state on j^{th} step of trajectory k

- try to infer the implicit desired trajectory

$$z_t = \begin{bmatrix} s^*_t \\ u^*_t \end{bmatrix} \quad \text{for } t = 0, \ldots, H$$
Learning a desired trajectory

colored lines: demonstrations of two loops
black line: inferred trajectory

Figure from Coates et al., CACM 2009
Learning reward function

- EM is used to infer desired trajectory from set of demonstrated trajectories
- The reward function is based on deviations from the desired trajectory
Finding the optimal control policy

• finding the control policy is a reinforcement learning task

\[\pi^* \leftarrow \arg\max_\pi E \left[\sum_t r(s_t, a) \mid \pi \right] \]

• RL learning methods described earlier don’t quite apply because state and action spaces are both continuous

• A special type of Markov decision process in which the optimal policy can be found efficiently
 • reward is represented as a linear function of state and action vectors
 • next state is represented as a linear function of current state and action vectors

• They use an iterative approach that finds an approximate solution because the reward function used is quadratic
THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.