
Reinforcement Learning
Part 2

CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts

• value functions and value iteration (review)

• Q functions and Q learning (review)

• exploration vs. exploitation tradeoff

• compact representations of Q functions

• reinforcement learning example

2

Value function for a policy

• given a policy π : S → A define

assuming action sequence chosen

according to π starting at state s

• we want the optimal policy π* where

p * = argmaxp V

p (s) for all s

we’ll denote the value function for this optimal policy as V*(s)

3




=

=
0

][)(
t

t

t rEsV 

Value iteration for learning V*(s)

initialize V(s) arbitrarily

loop until policy good enough

{

loop for s ∈ S

{

loop for a ∈ A

{

}

}

}

4




+
Ss

sVassPasrasQ
'

)'(),|'(),(),(

),(max)(asQsV a

Q learning

define a new function, closely related to V*

if agent knows Q(s, a), it can choose optimal action without knowing P(s’ |

s, a)

and it can learn Q(s, a) without knowing P(s’ | s, a)

5

   )'())(,()(*

)(,|'

**
* sVEssrEsV

sss 
 +

   )'(),(),(*

,|' sVEasrEasQ ass+

),(max)(* asQsV a),(maxarg)(* asQs a

Q learning for deterministic worlds

for each s, a initialize table entry

observe current state s

do forever

select an action a and execute it

receive immediate reward r

observe the new state s’

update table entry

s ← s’

6

)','(ˆmax),(ˆ ' asQrasQ a+

0),(ˆ asQ

Q learning for nondeterministic worlds

for each s, a initialize table entry

observe current state s

do forever

select an action a and execute it

receive immediate reward r

observe the new state s’

update table entry

s ← s’

an =
1

1+ visitsn(s,a)

where αn is a parameter dependent

on the number of visits to the given

(s, a) pair

7

0),(ˆ asQ

 )','(ˆmax),(ˆ)1(),(ˆ
1'1 asQrasQasQ nannnn −− ++− 

Q’s vs. V’s

• Which action do we choose when we’re in a given state?

• V’s (model-based)

• need to have a ‘next state’ function to generate all possible
states

• choose next state with highest V value.

• Q’s (model-free)

• need only know which actions are legal

• generally choose next state with highest Q value.

V V

V

Q

Q

8

Exploration vs. Exploitation

• in order to learn about better alternatives, we shouldn’t always follow
the current policy (exploitation)

• sometimes, we should select random actions (exploration)

• one way to do this: select actions probabilistically according to:

where c > 0 is a constant that determines how strongly selection
favors actions with higher Q values

9


=

j

asQ

asQ

i
j

i

c

c
saP

),(ˆ

),(ˆ

)|(

Q learning with a table

As described so far, Q learning entails filling in a huge table

A table is a very

verbose way to

represent a function

s0 s1 s2 . . . sn

a1

a2

a3

.

.

.

ak

. . . Q(s2, a3)

.

.

.

actions

states

10

Q(s, a1)

Q(s, a2)

Q(s, ak)

Representing Q functions more compactly

We can use some other function representation (e.g. a neural net)
to compactly encode a substitute for the big table

encoding of

the state (s)

or could have one net

for each possible action

each input unit encodes

a property of the state

(e.g., a sensor value)

11

Why use a compact Q function?

1. Full Q table may not fit in memory for realistic problems

2. Can generalize across states, thereby speeding up
convergence

i.e. one instance ‘fills’ many cells in the Q table

Notes

1. When generalizing across states, cannot use α=1

2. Convergence proofs only apply to Q tables

3. Some work on bounding errors caused by using compact
representations (e.g. Singh & Yee, Machine Learning 1994)

12

Given: 100 Boolean-valued features

10 possible actions

Size of Q table

10 × 2100 entries

Size of Q net (assume 100 hidden units)

100 × 100 + 100 × 10 = 11,000 weights

Q tables vs. Q nets

weights between

inputs and HU’s
weights between

HU’s and outputs

13

Representing Q functions more compactly

• we can use other regression methods to represent Q functions

k-NN

regression trees

support vector regression

etc.

14

Q learning with function approximation

1. measure sensors, sense state s0

2. predict for each action a

3. select action a to take (with randomization to ensure

exploration)

4. apply action a in the real world

5. sense new state s1 and immediate reward r

6. calculate action a’ that maximizes

7. train with new instance

Q̂n(s0,a)

Q̂n(s1,a ')

15

 )',(ˆmax),(ˆ)1(1'0

0

asQrasQy

s

a ++−

=x

Calculate Q-value you would have put into Q-table, and use

it as the training label

ML example: reinforcement learning to control
an autonomous helicopter

video of Stanford University autonomous helicopter from http://heli.stanford.edu/
16

Stanford autonomous helicopter

sensing the helicopter’s state

• orientation sensor

accelerometer

rate gyro

magnetometer

• GPS receiver (“2cm accuracy as long as its antenna is pointing

towards the sky”)

• ground-based cameras

actions to control the helicopter

1. Expert pilot demonstrates the airshow several times

2. Learn a reward function based on desired trajectory

3. Learn a dynamics model

4. Find the optimal control policy for learned reward and dynamics
model

5. Autonomously fly the airshow

6. Learn an improved dynamics model. Go back to step 4

Experimental setup for helicopter

Learning dynamics model P(st+1 | st, a)

• state represented by helicopter’s

x,y,z()

w x ,w y,w z()

u1,u2,u3,u4()

• action represented by manipulations of 4 controls

position

velocity

angular velocity

• dynamics model predicts accelerations as a function of current state

and actions

• accelerations are integrated to compute the predicted next state

Learning dynamics model P(st+1 | st, a)

• A, B, C, D represent model parameters

• g represents gravity vector

• w’s are random variables representing noise and unmodeled effects

• linear regression task!

dynamics

model

Learning a desired trajectory

• repeated expert demonstrations are often suboptimal in different ways

• given a set of M demonstrated trajectories

state on jth step of trajectory kaction on jth step of trajectory k

• try to infer the implicit desired trajectory

1,...,0,1,...,0for −=−=







= MkNj

u

s
y

k

j

k

jk

j

,...,Ht
u

s
z

t

t

t 0for
*

*

=







=

Learning a desired trajectory

Figure from Coates et al.,CACM 2009

colored lines: demonstrations of two loops

black line: inferred trajectory

Learning reward function

• EM is used to infer desired trajectory from set of demonstrated

trajectories

• The reward function is based on deviations from the desired trajectory

Finding the optimal control policy

• finding the control policy is a reinforcement learning task

• RL learning methods described earlier don’t quite apply because state and

action spaces are both continuous

• A special type of Markov decision process in which the optimal policy can be

found efficiently

• reward is represented as a linear function of state and action vectors

• next state is represented as a linear function of current state and action

vectors

• They use an iterative approach that finds an approximate solution because the

reward function used is quadratic









    |),(maxarg*

t

t asrE

THANK YOU
Some of the slides in these lectures have been adapted/borrowed

from materials developed by Mark Craven, David Page, Jude
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,

and Pedro Domingos.

