Instance-Based Learning

CS760@UW-Madison

0

Goals for the lecture

you should understand the following concepts

- k-NN classification
- k-NN regression
- edited nearest neighbor
- k-d trees for nearest neighbor identification (optional)
- locally weighted regression
- inductive bias (hypothesis space bias, preference bias)

Nearest-neighbor classification

learning stage

- given a training set $\left(\boldsymbol{x}^{(l)}, y^{(l)}\right), \ldots,\left(\boldsymbol{x}^{(m)}, y^{(m)}\right)$, do nothing (it's sometimes called a lazy learner)
classification stage
- given: an instance $\boldsymbol{x}^{(q)}$ to classify
- find the training-set instance $\boldsymbol{x}^{(i)}$ that is most similar to $\boldsymbol{x}^{(q)}$
- return the class value $y^{(i)}$

The decision regions

Voronoi diagram: each polyhedron indicates the region of feature space that is in the nearest neighborhood of each training instance

k-nearest-neighbor classification

classification task

- given: an instance $\boldsymbol{x}^{(q)}$ to classify
- find the k training-set instances $\left(\boldsymbol{x}^{(1)}, y^{(l)}\right), \ldots,\left(\boldsymbol{x}^{(k)}, y^{(k)}\right)$ that are most similar to $\boldsymbol{x}^{(q)}$
- return the class value

$$
\hat{y} \leftarrow \underset{v \in \operatorname{values}(Y)}{\operatorname{argmax}} \sum_{i=1}^{k} \delta\left(v, y^{(i)}\right) \quad \delta(a, b)=\left\{\begin{array}{c}
1 \text { if } a=b \\
0 \text { otherwise }
\end{array}\right.
$$

(i.e. return the class that have the most instances)

How can we determine distance

suppose all features are discrete

- Hamming distance: count the number of features for which two instances differ
suppose all features are continuous
- Euclidean distance:

$$
d\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\sqrt{\sum_{f}\left(x_{f}^{(i)}-x_{f}^{(j)}\right)^{2}} \text { where } x_{f}^{(i)} \text { represents the } f \text {-th feature of } x^{(i)}
$$

- Manhattan distance:

$$
d\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\sum_{f}\left|x_{f}^{(i)}-x_{f}^{(j)}\right|
$$

How can we determine distance

- if we have a mix of discrete/continuous features:

$$
d\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\sum_{f} \begin{cases}\left|x_{f}^{(i)}-x_{f}^{(j)}\right| & \text { if } f \text { is continuous } \\ 1-\delta\left(x_{f}^{(i)}, x_{f}^{(j)}\right) & \text { if } f \text { is discrete }\end{cases}
$$

- typically want to apply to continuous features some type of normalization (values range 0 to 1) or standardization (values distributed according to standard normal)
- many other possible distance functions we could use ...

Standardizing numeric features

- given the training set D, determine the mean and stddev for feature x_{i}

$$
\mu_{i}=\frac{1}{|D|} \sum_{d=1}^{|D|} x_{i}^{(d)}
$$

$$
\sigma_{i}=\sqrt{\frac{1}{|D|} \sum_{d=1}^{|D|}\left(x_{i}^{(d)}-\mu_{i}\right)^{2}}
$$

- standardize each value of feature x_{i} as follows

$$
\hat{x}_{i}^{(d)}=\frac{x_{i}^{(d)}-\mu_{i}}{\sigma_{i}}
$$

- do the same for test instances, using the same μ_{i} and σ_{i} derived from the training data

k-nearest-neighbor regression

learning stage

- given a training set $\left(\boldsymbol{x}^{(l)}, y^{(I)}\right), \ldots,\left(\boldsymbol{x}^{(m)}, y^{(m)}\right)$, do nothing
prediction stage
- given: an instance $\boldsymbol{x}^{(q)}$ to make a prediction for
- find the k training-set instances $\left(x^{(l)}, y^{(l)}\right), \ldots,\left(x^{(k)}, y^{(k)}\right)$ that are most similar to $\boldsymbol{x}^{(q)}$
- return the value

$$
\hat{y} \leftarrow \frac{1}{k} \sum_{i=1}^{k} y^{(i)}
$$

Distance-weighted nearest neighbor

We can have instances contribute to a prediction according to their distance from $\boldsymbol{x}^{(q)}$
classification:

$$
\hat{y} \leftarrow \underset{v \in \operatorname{values}(Y)}{\operatorname{argmax}} \sum_{i=1}^{k} w_{i} \delta\left(v, y^{(i)}\right) \quad w_{i}=\frac{1}{d\left(x^{(q)}, x^{(i)}\right)^{2}}
$$

regression:

$$
\hat{y} \leftarrow \frac{\sum_{i=1}^{k} w_{i} y^{(i)}}{\sum_{i=1}^{k} w_{i}}
$$

Irrelevant features

here's a case in which there is one relevant feature x_{1} and a 1NN rule classifies each instance correctly
consider the effect of an irrelevant feature x_{2} on distances and nearest neighbors

Locally weighted regression

- one way around this limitation is to weight features differently
- locally weighted regression is one nearest-neighbor variant that does this
prediction task
- given: an instance $\boldsymbol{x}^{(q)}$ to make a prediction for
- find the k training-set instances $\left(x^{(l)}, y^{(l)}\right), \ldots,\left(x^{(k)}, y^{(k)}\right)$ that are most similar to $\boldsymbol{x}^{(q)}$
- return the value

$$
f\left(\mathbf{x}^{(q)}\right)=w_{0}+w_{1} x_{1}^{(q)}+w_{2} x_{2}^{(q)}+\ldots+w_{n} x_{n}^{(q)}
$$

Locally weighted regression

prediction/learning task

- find the weights w_{i} for each $\boldsymbol{x}^{(q)}$ by minimizing

$$
E\left(\mathbf{x}^{(q)}\right)=\sum_{i=1}^{k}\left(f\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

- this is done at prediction time, specifically for $\boldsymbol{x}^{(q)}$
- can do this using gradient descent (to be covered soon)

Speeding up k-NN

- k-NN is a "lazy" learning algorithm - does virtually nothing at training time
- but classification/prediction time can be costly when the training set is large
- two general strategies for alleviating this weakness
- don't retain every training instance (edited nearest neighbor)
- use a smart data structure to look up nearest neighbors (e.g. a k-d tree)

Edited instance-based learning

- select a subset of the instances that still provide accurate classifications
- incremental deletion
start with all training instances in memory
for each training instance $\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)$
if other training instances provide correct classification for $\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)$ delete it from the memory
- incremental growth
start with an empty memory for each training instance $\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)$
if other training instances in memory don't correctly classify $\left(x^{(i)}, y^{(i)}\right)$ add it to the memory

Strength and Limitations

0

Strengths of instance-based learning

- simple to implement
- "training" is very efficient
- adapts well to on-line learning
- robust to noisy training data (when $k>1$)
- often works well in practice

Limitations of instance-based learning

- sensitive to range of feature values
- sensitive to irrelevant and correlated features, although ...
- there are variants (such as locally weighted regression) that learn weights for different features
- later we'll talk about feature selection methods
- classification/prediction can be inefficient, although edited methods and k - d trees can help alleviate this weakness
- doesn't provide much insight into problem domain because there is no explicit model

Inductive bias

- inductive bias is the set of assumptions a learner uses to be able to predict y_{i} for a previously unseen instance \boldsymbol{x}_{i}
- two components
- hypothesis space bias: determines the models that can be represented
- preference bias: specifies a preference ordering within the space of models
- in order to generalize (i.e. make predictions for previously unseen instances) a learning algorithm must have an inductive bias

Consider the inductive bias of DT and k-NN learners

learner	hypothesis space bias	preference bias
ID3 decision tree	trees with single-feature, axis- parallel splits	small trees identified by greedy search
k-NN	Voronoi decomposition determined by nearest neighbors	instances in neighborhood belong to same class

k-d Tree: Data Structure for Finding Nearest Neighbors

$k-d$ trees

a k-d tree is similar to a decision tree except that each internal node

- stores one instance
- splits on the median value of the feature having the highest variance

Finding nearest neighbors with a k -d tree

- use branch-and-bound search
- priority queue stores
- nodes considered
- lower bound on their distance to query instance
- lower bound given by distance using a single feature
- average case: $O\left(\log _{2} m\right)$
- worst case: $\quad O(m)$ where m is the size of the training-set

Finding nearest neighbors in a k-d tree

```
NearestNeighbor(instance }\mp@subsup{\boldsymbol{x}}{}{(q)}
PQ = {}
best_dist = m
PQ.push(root, 0)
while PQ is not empty
    (node, bound) = PQ.pop();
    if (bound \geq best_dist)
    return best_node.instance // nearest neighbor found
    dist = distance(x}\mp@subsup{\boldsymbol{x}}{}{(q)},\mathrm{ node. instance)
    if (dist < best_dist)
    best_dist = dist
    best_node = node
    if (q[node.feature] - node.threshold > 0)
    PQ.push(node.left, 齐)[node.feature] - node.threshold)
    PQ.push(node.right, 0)
    else
    PQ.push(node.left, 0)
    PQ.push(node.right, node. threshold - x}\mp@subsup{\boldsymbol{x}}{}{(q)}\mathrm{ [node.feature])
return best_node.instance
```


k-d tree example (Manhattan distance)

given query
$\boldsymbol{x}^{(q)}=(2,3)$

k-d tree example (Manhattan distance)

given query
$\boldsymbol{x}^{(q)}=(2,3)$

distance	best distance	best node	priority queue
	∞		$(f, 0)$

k-d tree example (Manhattan distance)

given query
$\boldsymbol{x}^{(q)}=(2,3)$

pop f

distance	best distance	best node	priority queue
	∞		$(\mathrm{f}, 0)$
4.0	4.0	f	

k-d tree example (Manhattan distance)

given query
$\boldsymbol{x}^{(q)}=(2,3)$

pop f

distance	best distance	best node	priority queue
	∞		(f, 0)
4.0	4.0	f	(c, 0)

k-d tree example (Manhattan distance)

given query
$\boldsymbol{x}^{(q)}=(2,3)$

pop f

distance	best distance	best node	priority queue
	∞		$(\mathrm{f}, 0)$
4.0	4.0	f	$(\mathrm{c}, 0)(\mathrm{h}, 4)$

k-d tree example (Manhattan distance)

distance	best distance	best node	priority queue	
		∞		$(\mathrm{f}, 0)$
pop f				
pop c	4.0	4.0	f	$(\mathrm{c}, 0) \quad(\mathrm{h}, 4)$
10.0	4.0	f		

k-d tree example (Manhattan distance)

distance	best distance	best node	priority queue
	∞		$(\mathrm{f}, 0)$
pop f	4.0	4.0	f
pop c	10.0	4.0	f
			$(\mathrm{c}, 0) \quad(\mathrm{h}, 4)$
		$\mathrm{h}, 4)(\mathrm{b}, 7)$	

k-d tree example (Manhattan distance)

distance	best distance	best node	priority queue	
	∞		$(\mathrm{f}, 0)$	
pop f				
pop c				
pop e	4.0	4.0	f	$(\mathrm{c}, 0)(\mathrm{h}, 4)$
	10.0	4.0	f	$(\mathrm{e}, 0)(\mathrm{h}, 4)(\mathrm{b}, 7)$
1.0	1.0	e		

k-d tree example (Manhattan distance)

given query
$\boldsymbol{x}^{(q)}=(2,3)$

distance	best distance	best node	priority queue	
	∞		$(\mathrm{f}, 0)$	
pop f	4.0	4.0	f	$(\mathrm{c}, 0)(\mathrm{h}, 4)$
pop c				
pop e	10.0	4.0	f	$(\mathrm{e}, 0)(\mathrm{h}, 4)(\mathrm{b}, 7)$
	1.0	1.0	e	$(\mathrm{d}, 1)(\mathrm{h}, 4)(\mathrm{b}, 7)$

k-d tree example (Manhattan distance)

	distance	best distance	best node	priority queue
		∞		(f, 0)
pop f	4.0	4.0	f	$(\mathrm{c}, 0)(\mathrm{h}, 4)$
pop c	10.0	4.0	f	$(\mathrm{e}, 0)(\mathrm{h}, 4)(\mathrm{b}, 7)$
pop e	1.0	1.0	e	$(\mathrm{d}, 1)(\mathrm{h}, 4)(\mathrm{b}, 7)$
pop d	return e			

THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.

