Evaluating Machine Learning Methods: Part 2

CS 760@UW-Madison

Goals for the last lecture

you should understand the following concepts

- bias of an estimator
- learning curves
- stratified sampling
- cross validation
- confusion matrices
- TP, FP, TN, FN
- ROC curves

Goals for the lecture

you should understand the following concepts

- PR curves
- confidence intervals for error
- pairwise *t*-tests for comparing learning systems
- scatter plots for comparing learning systems
- lesion studies

Recall: ROC

true positive rate (recall) =
$$\frac{TP}{actual pos}$$
 = $\frac{TP}{TP + FN}$
false positive rate = $\frac{FP}{actual neg}$ = $\frac{FP}{TN + FP}$

ROC curves

Does a low false-positive rate indicate that most positive predictions (i.e. predictions with confidence > some threshold) are correct?

suppose our TPR is 0.9, and FPR is 0.01

fraction of instances that are positive	fraction of positive predictions that are correct
0.5	0.989
0.1	0.909
0.01	0.476
0.001	0.083

Other accuracy metrics

recall (TP rate) =
$$\frac{TP}{actual pos} = \frac{TP}{TP + FN}$$

precision (positive predictive value) = $\frac{TP}{\text{predicted pos}} = \frac{TP}{TP + FP}$

Precision/recall curves

A *precision/recall curve* plots the precision vs. recall (TP-rate) as a threshold on the confidence of an instance being positive is varied

Precision/recall curve example

figure from Kawaler et al., Proc. of AMIA Annual Symosium, 2012

How do we get one ROC/PR curve when we do cross validation?

Approach 1

- make assumption that confidence values are comparable across folds
- pool predictions from all test sets
- plot the curve from the pooled predictions

Approach 2 (for ROC curves)

- plot individual curves for all test sets
- view each curve as a function
- plot the average curve for this set of functions

Comments on ROC and PR curves

both

- allow predictive performance to be assessed at various levels of confidence
- assume binary classification tasks
- sometimes summarized by calculating area under the curve

ROC curves

- insensitive to changes in class distribution (ROC curve does not change if the proportion of positive and negative instances in the test set are varied)
- can identify optimal classification thresholds for tasks with differential misclassification costs

precision/recall curves

- show the fraction of predictions that are false positives
- well suited for tasks with lots of negative instances

Given the observed error (accuracy) of a model over a limited sample of data, how well does this error characterize its accuracy over additional instances?

Suppose we have

- a learned model h
- a test set *S* containing *n* instances drawn independently of one another and independent of *h*
- *n* ≥ 30
- *h* makes *r* errors over the *n* instances

our best estimate of the error of *h* is

$$error_{S}(h) = \frac{r}{n}$$

With approximately C% probability, the true error lies in the interval

$$error_{S}(h) \pm z_{C}\sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

where z_C is a constant that depends on C (e.g. for 95% confidence, $z_C = 1.96$)

How did we get this?

1. Our estimate of the error follows a binomial distribution given by *n* and *p* (the true error rate over the data distribution)

2. Most common way to determine a binomial confidence interval is to use the *normal approximation* (although can calculate exact intervals if *n* is not too large)

2. When $n \ge 30$, and p is not too extreme, the normal distribution is a good approximation to the binomial

3. We can determine the C% confidence interval by determining what bounds contain C% of the probability mass under the normal

Comparing learning systems

How can we determine if one learning system provides better performance than another

- for a particular task?
- across a set of tasks / data sets?

Motivating example

	Accuracies on test sets							
System A:	80%	50	75		99			
System B:	79	49	74		98			
δ:	+1 -	+1	+1		+1			

- Mean accuracy for System A is better, but the standard deviations for the two clearly overlap
- Notice that System A is always better than System B

Comparing systems using a paired t test

- consider δ 's as observed values of a set of i.i.d. random variables
- null hypothesis: the 2 learning systems have the same accuracy
- *alternative hypothesis*: one of the systems is more accurate than the other
- hypothesis test:
 - use paired *t*-test to determine probability p that mean of δ 's would arise from null hypothesis
 - if p is sufficiently small (typically < 0.05) then reject the null hypothesis

Comparing systems using a paired t test

1. calculate the sample mean

2. calculate the *t* statistic

$$t = \frac{\delta}{\sqrt{\frac{1}{n(n-1)}\sum_{i=1}^{n} (\delta_i - \bar{\delta})^2}}$$

-

3. determine the corresponding *p*-value, by looking up *t* in a table of values for the Student's *t*-distribution with *n*-1 degrees of freedom

ABLE B	BLE B.2 THE # DISTRIBUTION								
ble entries	are values of a	corresponding to prop	ortions in one tail or	in two tails combine	d.				
		considerantly to back	ortical in car an o	in two land comone					
		\frown		0					
			~ ~	1	_				
		One tail		Two tails					
		(either right or le	(the	combined					
	0.25	0.10	PROPORTION IN 0.05	ONE TAIL 0.025	0.01	0.005			
_	0.25		DPORTION IN TWO T		0.01	0.005			
df	0.50	0.20	0.10	0.05	0.02	0.01			
1	1.000	3.078	6,314	12.705	31.821	63.657			
2	0.816	1.886	2,920	4.303	6.963	9.925			
3	0.765	1.638	2.353	3.182	4.541	5.841			
- 41	0.741	1.533	2.132	2.776	3.747	4.604			
5	0.727	1.476	2.015	2.571	3.365	4.032			
6	0.718	1.440	1.943	2.447	3.143	3.707			
7	0.711	1.415	1.895	2.365	2.998	3.499			
8	0.705	1.397	1.860	2.306	2.896	3.355			
10	0.700	1.383	1.812	2.228	2.764	3.169			
11	0.697	1.363	1.796	2.201	2.718	3.106			
12	0.695	1.356	1.782	2.179	2.681	1.055			
13	0.694	1.350	1.771	2.160	2.650	3.012			
14	0.692	1.345	1.761	2.145	2.624	2.977			
15	0.691	1.341	1.753	2.131	2.602	2.947			
16	0.690	1.337	1.746	2.120	2.583	2.921			
17	0.689	1.333	1.740	2.110	2.567	2.898			
18	0.685	1.330	1.734 1.729	2.101 2.093	2.552	2.878			
20	0.687	1.325	1.725	2.086	2.528	2.845			
21	0.686	1.323	1.725	2.080	2.518	2.831			
22	0.686	1.321	1.717	2.074	2.508	2.819			
23	0.685	1.319	1.714	2.069	2.500	2.807			
24	0.685	1.318	1.711	2.064	2.492	2.797			
25	0.684	1.316	1.708	2.060	2.485	2.787			
26 27	0.684	1.315	1.706	2.056	2,479	2.779			
27	0.683	1.314	1.703	2.052 2.048	2.473 2.467	2.771 2.763			
29	0.683	1.311	1.699	2.045	2.462	2.755			
30	0.683	1.310	1.697	2.043	2.457	2.750			
40	0.681	1.303	1.684	2.021	2.423	2.704			
60	0.679	1.296	1.671	2.000	2.390	2.660			
120	0.677	1.289	1.658	1.980	2.358	2.617			
-06	0.674	1.282	1.645	1.960	2.326	2,576			

Comparing systems using a paired *t* test

f(t)

The null distribution of our *t* statistic looks like this

The *p*-value indicates how far out in a tail our *t* statistic is

If the *p*-value is sufficiently small, we reject the <u>null hypothesis</u>, since it is unlikely we'd get such a *t* by chance

Why do we use a two-tailed test?

- a two-tailed test asks the question: is the accuracy of the two systems different
- a one-tailed test asks the question: is system A better than system B
- a priori, we don't know which learning system will be more accurate (if there is a difference) – we want to allow that either one might be

Comments on hypothesis testing to compare learning systems

- the paired *t*-test can be used to compare two <u>learning</u> systems
- other tests (e.g. McNemar's χ^2 test) can be used to compare two learned models
- a statistically significant difference is not necessarily a large-magnitude difference

Scatter plots for pairwise method comparison

We can compare the performance of two methods *A* and *B* by plotting (*A performance*, *B performance*) across <u>numerous data sets</u>

figure from Freund & Mason, ICML 1999

figure from Noto & Craven, BMC Bioinformatics 2006

Lesion studies

We can gain insight into what contributes to a learning system's performance by removing (lesioning) components of it

The ROC curves here show how performance is affected when various feature types are removed from the learning representation

To avoid pitfalls, ask

- Is my held-aside test data really representative of going out to collect new data?
 - Even if your methodology is fine, someone may have collected features for positive examples differently than for negatives – should be randomized
 - Example: samples from cancer processed by different people or on different days than samples for normal controls

To avoid pitfalls, ask

- 2. Did I repeat my entire data processing procedure on every fold of cross-validation, using only the training data for that fold?
 - On each fold of cross-validation, did I ever access in any way the label of a test instance?
 - Any preprocessing done over entire data set (feature selection, parameter tuning, threshold selection) must not use labels

To avoid pitfalls, ask

- 3. Have I modified my algorithm so many times, or tried so many approaches, on this same data set that I (the human) am overfitting it?
 - Have I continually modified my preprocessing or learning algorithm until I got some improvement on this data set?
 - If so, I really need to get some additional data now to at least test on

THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.