Decision Tree Learning: Part 1

CS 760@UW-Madison
Zoo of machine learning models

classification
- SVC
- Ensemble Classifiers
- KNeighbors Classifier
- SGD Classifier
- Naive Bayes
- Text Data
- Linear SVC

<100K samples

classification
- do you have labeled data?
- number of categories known?
- just looking?
- predicting structure?
- predicting a category?
- predicting a quantity?
- few features should be important?

>50 samples

<100K samples

regression
- SGD Regressor
- Lasso
- ElasticNet
- RidgeRegression
- SVR(kernel="rbf")
- SVR(kernel="linear")

<10K samples

clustering
- Spectral Clustering
- GMM
- KMeans
- MiniBatch KMeans
- MeanShift
- VBGMM

<10K samples

dimensionality reduction
- Randomized PCA
- Isomap
- Spectral Embedding
- LLE
- kernel approximation

Note: only a subset of ML methods
Figure from scikit-learn.org
Even a subarea has its own collection

Figure from asimovinstitute.org
The lectures

organized according to different machine learning models/methods

1. supervised learning
 • non-parametric: decision tree, nearest neighbors
 • parametric
 • discriminative: linear/logistic regression, SVM, NN
 • generative: Naïve Bayes, Bayesian networks
2. unsupervised learning: clustering*, dimension reduction
3. reinforcement learning
4. other settings: ensemble, active, semi-supervised*

intertwined with experimental methodologies, theory, etc.

1. evaluation of learning algorithms
2. learning theory: PAC, bias-variance, mistake-bound
3. feature selection

*: if time permits
Goals for this lecture

you should understand the following concepts

• the decision tree representation
• the standard top-down approach to learning a tree
• Occam’s razor
• entropy and information gain
Decision Tree Representation
A decision tree to predict heart disease

Each internal node tests one feature x_i.

Each branch from an internal node represents one outcome of the test.

Each leaf predicts y or $P(y | x)$.

Features

- **thal**
 - normal
 - fixed_defect
 - reversible_defect

- **#_major_vessels > 0**
 - present
 - false

- **chest_pain_type**
 - absent
 - present

Tree:

1. **#_major_vessels > 0**
 - true
 - false

2. **chest_pain_type**
 - absent
 - present

Decision Paths:

- **Path 1**: false, absent
- **Path 2**: true, absent
- **Path 3**: true, absent
- **Path 4**: true, present

Predictions:

- **Path 1**: absent
- **Path 2**: absent
- **Path 3**: absent
- **Path 4**: present
Suppose $X_1 \ldots X_5$ are Boolean features, and Y is also Boolean.

How would you represent the following with decision trees?

\[Y = X_2 X_5 \quad \text{(i.e., } Y = X_2 \land X_5 \text{)} \]

\[Y = X_2 \lor X_5 \]

\[Y = X_2 X_5 \lor X_3 \neg X_1 \]
Decision Tree Learning
History of decision tree learning

CART developed by Leo Breiman, Jerome Friedman, Charles Olshen, R.A. Stone

ID3, C4.5, C5.0 developed by Ross Quinlan

dates of seminal publications: work on these 2 was contemporaneous

many DT variants have been developed since CART and ID3
Top-down decision tree learning

MakeSubtree(set of training instances D)

$C = \text{DetermineCandidateSplits}(D)$

if stopping criteria met

make a leaf node N

determine class label/probabilities for N

else

make an internal node N

$S = \text{FindBestSplit}(D, C)$

for each outcome k of S

$D_k = \text{subset of instances that have outcome } k$

k^{th} child of $N = \text{MakeSubtree}(D_k)$

return subtree rooted at N
Candidate splits in ID3, C4.5

• splits on nominal features have one branch per value

- thal
 - normal
 - fixed_defect
 - reversible_defect

• splits on numeric features use a threshold

- weight ≤ 35
 - true
 - false
Candidate splits on numeric features

given a set of training instances D and a specific feature X_i

- sort the values of X_i in D
- evaluate split thresholds in intervals between instances of different classes

- could use midpoint of each considered interval as the threshold
- C4.5 instead picks the largest value of X_i in the entire training set that does not exceed the midpoint
Candidate splits on numeric features (in more detail)

// Run this subroutine for each numeric feature at each node of DT induction

DetermineCandidateNumericSplits(set of training instances D, feature X_i)

$C = \{\}$ // initialize set of candidate splits for feature X_i

$S = \text{partition instances in } D \text{ into sets } s_1 \ldots s_V \text{ where the instances in each set have the same value for } X_i$

let v_j denote the value of X_i for set s_j

sort the sets in S using v_j as the key for each s_j

for each pair of adjacent sets s_j, s_{j+1} in sorted S

if s_j and s_{j+1} contain a pair of instances with different class labels

// assume we’re using midpoints for splits

add candidate split $X_i \leq (v_j + v_{j+1})/2$ to C

return C
Candidate splits

- instead of using k-way splits for k-valued features, could require binary splits on all discrete features (CART does this)

```
thal
  normal
  reversible_defect ∨ fixed_defect

color
  red ∨ blue
  green ∨ yellow
```
Finding The Best Splits
Finding the best split

• How should we select the best feature to split on at each step?

• Key hypothesis: the simplest tree that classifies the training instances accurately will work well on previously unseen instances
Occam’s razor

• attributed to 14th century William of Ockham

• “Nunquam ponenda est pluralitis sin necesitate”

• “Entities should not be multiplied beyond necessity”

• “when you have two competing theories that make exactly the same predictions, the simpler one is the better”
But a thousand years earlier, I said, “We consider it a good principle to explain the phenomena by the simplest hypothesis possible.”
Occam’s razor and decision trees

Why is Occam’s razor a reasonable heuristic for decision tree learning?

- there are fewer short models (i.e. small trees) than long ones
- a short model is unlikely to fit the training data well by chance
- a long model is more likely to fit the training data well coincidentally
Finding the best splits

• Can we find and return the smallest possible decision tree that accurately classifies the training set?

NO! This is an NP-hard problem

• Instead, we’ll use an information-theoretic heuristic to greedily choose splits
Information theory background

• consider a problem in which you are using a code to communicate information to a receiver

• example: as bikes go past, you are communicating the manufacturer of each bike
Information theory background

- suppose there are only four types of bikes
- we could use the following code

<table>
<thead>
<tr>
<th>type</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trek</td>
<td>11</td>
</tr>
<tr>
<td>Specialized</td>
<td>10</td>
</tr>
<tr>
<td>Cervelo</td>
<td>01</td>
</tr>
<tr>
<td>Serrota</td>
<td>00</td>
</tr>
</tbody>
</table>

- expected number of bits we have to communicate: 2 bits/bike
Information theory background

• we can do better if the bike types aren’t equiprobable
• optimal code uses \(\log_2 P(y) \) bits for event with probability \(P(y) \)

<table>
<thead>
<tr>
<th>Type/probability</th>
<th># bits</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(\text{Trek}) = 0.5)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(P(\text{Specialized}) = 0.25)</td>
<td>2</td>
<td>01</td>
</tr>
<tr>
<td>(P(\text{Cervelo}) = 0.125)</td>
<td>3</td>
<td>001</td>
</tr>
<tr>
<td>(P(\text{Serrota}) = 0.125)</td>
<td>3</td>
<td>000</td>
</tr>
</tbody>
</table>

• expected number of bits we have to communicate: 1.75 bits/bike

\[
- \sum_{y \in \text{values}(Y)} P(y) \log_2 P(y)
\]
Entropy

- entropy is a measure of uncertainty associated with a random variable

- defined as the expected number of bits required to communicate the value of the variable

\[H(Y) = - \sum_{y \in \text{values}(Y)} P(y) \log_2 P(y) \]

entropy function for binary variable
Conditional entropy

- What’s the entropy of \(Y \) if we condition on some other variable \(X \)?

\[
H(Y|X) = \sum_{x \in \text{values}(X)} P(X = x) H(Y|X = x)
\]

where

\[
H(Y|X = x) = -\sum_{y \in \text{values}(Y)} P(Y = y|X = x) \log_2 P(Y = y|X = x)
\]
choosing splits in ID3: select the split S that most reduces the conditional entropy of Y for training set D
Relations between the concepts

Figure from wikipedia.org
PlayTennis: training examples

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Information gain example

What’s the information gain of splitting on Humidity?

\[H_D(Y) = -\frac{9}{14} \log_2 \left(\frac{9}{14} \right) - \frac{5}{14} \log_2 \left(\frac{5}{14} \right) = 0.940 \]

\[H_D(Y|\text{high}) = -\frac{3}{7} \log_2 \left(\frac{3}{7} \right) - \frac{4}{7} \log_2 \left(\frac{4}{7} \right) = 0.985 \]

\[H_D(Y|\text{normal}) = -\frac{6}{7} \log_2 \left(\frac{6}{7} \right) - \frac{1}{7} \log_2 \left(\frac{1}{7} \right) = 0.592 \]

\[\text{InfoGain}(D, \text{Humidity}) = H_D(Y) - H_D(Y|\text{Humidity}) \]

\[= 0.940 - \left[\frac{7}{14} (0.985) + \frac{7}{14} (0.592) \right] \]

\[= 0.151 \]
Information gain example

- Is it better to split on Humidity or Wind?

Humidity

- high
 - D: [3+, 4-]

- normal
 - D: [6+, 1-]

D: [9+, 5-]

Wind

- weak
 - D: [6+, 2-]

- strong
 - D: [3+, 3-]

D: [9+, 5-]

\[
H_D(Y \mid \text{weak}) = 0.811 \\
H_D(Y \mid \text{strong}) = 1.0
\]

\[
\text{InfoGain}(D, \text{Humidity}) = 0.940 - \left[\frac{7}{14} (0.985) + \frac{7}{14} (0.592) \right] \\
= 0.151
\]

\[
\text{InfoGain}(D, \text{Wind}) = 0.940 - \left[\frac{8}{14} (0.811) + \frac{6}{14} (1.0) \right] \\
= 0.048
\]
One limitation of information gain

• information gain is biased towards tests with many outcomes

• e.g. consider a feature that uniquely identifies each training instance
 • splitting on this feature would result in many branches, each of which is “pure” (has instances of only one class)
 • maximal information gain!
Gain ratio

• to address this limitation, C4.5 uses a splitting criterion called *gain ratio*

• gain ratio normalizes the information gain by the entropy of the split being considered

\[
\text{GainRatio}(D, S) = \frac{\text{InfoGain}(D, S)}{H_D(S)} = \frac{H_D(Y) - H_D(Y | S)}{H_D(S)}
\]
THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.