Q1-1: Select the correct option.

- A. A perceptron is guaranteed to perfectly learn a given linearly well-separable function within a finite number of training steps.
- B. A single perceptron can compute the XOR function.

- 1. Both statements are true.
- 2. Both statements are false.
- 3. Statement A is true, Statement B is false.
- 4. Statement B is true, Statement A is false.

Q1-1: Select the correct option.

- A. A perceptron is guaranteed to perfectly learn a given linearly well-separable function within a finite number of training steps.
- B. A single perceptron can compute the XOR function.

- 1. Both statements are true.
- 2. Both statements are false.
- 3. Statement A is true, Statement B is false.
- 4. Statement B is true, Statement A is false.

Q1-2: The decision boundary obtained by a perceptron for the given dataset is shown in green and is of following form:  $w_0 + w_1x_1 + w_2x_2 = 0$ . Which of the following set of values for  $\{w_0, w_1, w_2\}$  can NOT depict the given boundary?

- 1. {-0.5, -1, 1}
- 2. {0.5, 1, -1}
- 3. {-0.5, -1, -1}
- 4. All of the above are valid candidates.



Q1-2: The decision boundary obtained by a perceptron for the given dataset is shown in green and is of following form:  $w_0 + w_1x_1 + w_2x_2 = 0$ . Which of the following set of values for  $\{w_0, w_1, w_2\}$  can NOT depict the given boundary?

- 1. {-0.5, -1, 1}
- 2. {0.5, 1, -1}
- 3. {-0.5, -1, -1}

4. All of the above are valid candidates.

#### **Equation of Line:**

 $x_2 = -(w_1/w_2)^* x_1 - w_0/w_2$ 

From the figure, it can be inferred that slope > 0 and y-intercept > 0. Slope:  $-(w_1/w_2)$ , y-intercept =  $-w_0/w_2$ 

- 1. Slope = 1, y-intercept = 0.5 -- possible
- 2. Slope = 1, y-intercept = 0.5 -- possible
- 3. Slope = -1, y-intercept = -0.5 -- NOT possible



## Q2-1: Select the correct option.

- A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs for new inputs that it was not trained with.
- B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1 neuron in the output has a total of 55 connections.

- 1. Both statements are true.
- 2. Both statements are false.
- 3. Statement A is true, Statement B is false.
- 4. Statement B is true, Statement A is false.

# Q2-1: Select the correct option.

- A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs for new inputs that it was not trained with.
- B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1 neuron in the output has a total of 55 connections.
- 1. Both statements are true.
- 2. Both statements are false.
- 3. Statement A is true, Statement B is false.
- 4. Statement B is true, Statement A is false.



## Q2-2: Select the correct option.

- A. The range of tanh activation function  $tanh(z) = 2\sigma(2z) 1$  is (-1, 1).
- B. Nominal features are usually represented using a thermometer encoding.

- 1. True, True
- 2. True, False
- 3. False, True
- 4. False, False

## Q2-2: Select the correct option.

- A. The range of tanh activation function  $tanh(z) = 2\sigma(2z) 1$  is (-1, 1).
- B. Nominal features are usually represented using a thermometer encoding.



## Q3-1: Select the correct option.

- A. The backpropagation learning algorithm is based on the gradient-descent method.
- B. In backpropagation learning, we usually start with a small learning parameter  $\eta$  and slowly increase it during the learning process.

- 1. Both statements are true.
- 2. Both statements are false.
- 3. Statement A is true, Statement B is false.
- 4. Statement B is true, Statement A is false.

## Q3-1: Select the correct option.

- A. The backpropagation learning algorithm is based on the gradient-descent method.
- B. In backpropagation learning, we usually start with a small learning parameter  $\eta$  and slowly increase it during the learning process.

- 1. Both statements are true.
- 2. Both statements are false.
- 3. Statement A is true, Statement B is false.



4. Statement B is true, Statement A is false.

Q3-2: Consider  $w \in R$ , the objective function to be minimized is the regularized loss  $L(w) + \lambda w^2$ . With  $w_t = 1$ ,  $dL(w_t) = 1$ , step size  $\eta = 0.1$ ,  $\lambda = 2$ , perform one step of gradient descent by computing the value of  $w_{t+1}$ . Hint:  $w_{t+1} = w_t - \eta \nabla (L(w) + \lambda w^2)$ 

1. 0.5

2. 1

3. 1.5

4. 0.1

Q3-2: Consider  $w \in R$ , the objective function to be minimized is the regularized loss  $L(w) + \lambda w^2$ . With  $w_t = 1$ ,  $dL(w_t) = 1$ , step size  $\eta = 0.1$ ,  $\lambda = 2$ , perform one step of gradient descent by computing the value of  $w_{t+1}$ . Hint:  $w_{t+1} = w_t - \eta \nabla (L(w) + \lambda w^2)$ 



4. 0.1

 $w_{t+1} = w_t - \eta d(L + \lambda w^2) = w_t - \eta dL(w_t) - \eta \lambda^* 2w_t$ = 1-0.1-0.1×2×2 = 1-0.1-0.4 = 0.5