Q1-1: Select the correct option.

A. A perceptron is guaranteed to perfectly learn a given linearly well-separable function within a finite number of training steps.
B. A single perceptron can compute the XOR function.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.
4. Statement B is true, Statement A is false.

Q1-1: Select the correct option.

A. A perceptron is guaranteed to perfectly learn a given linearly well-separable function within a finite number of training steps.
B. A single perceptron can compute the XOR function.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.
4. Statement B is true, Statement A is false.

Q1-2: The decision boundary obtained by a perceptron for the given dataset is shown in green and is of following form: $w_{0}+w_{1} x_{1}+w_{2} x_{2}=0$. Which of the following set of values for $\left\{w_{0}, w_{1}, w_{2}\right\}$ can NOT depict the given boundary?

1. $\{-0.5,-1,1\}$
2. $\{0.5,1,-1\}$
3. $\{-0.5,-1,-1\}$
4. All of the above are valid candidates.

Q1-2: The decision boundary obtained by a perceptron for the given dataset is shown in green and is of following form: $w_{0}+w_{1} x_{1}+w_{2} x_{2}=0$. Which of the following set of values for $\left\{w_{0}, w_{1}, w_{2}\right\}$ can NOT depict the given boundary?

1. $\{-0.5,-1,1\}$
2. $\{0.5,1,-1\}$
3. $\{-0.5,-1,-1\}$
4. All of the above are valid candidates.

Equation of Line:

$\mathrm{x}_{2}=-\left(\mathrm{w}_{1} / \mathrm{w}_{2}\right)^{*} \mathrm{x}_{1}-\mathrm{w}_{0} / \mathrm{w}_{2}$

From the figure, it can be inferred that slope >0 and y-intercept >0.
Slope: $-\left(w_{1} / w_{2}\right), y$-intercept $=-w_{0} / w_{2}$

1. Slope $=1, y$-intercept $=0.5-$ - possible
2. Slope $=1, y$-intercept $=0.5-$ - possible
3. Slope $=-1, y$-intercept $=-0.5-$ NOT possible

Q2-1: Select the correct option.

A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs for new inputs that it was not trained with.
B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1 neuron in the output has a total of 55 connections.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.
4. Statement B is true, Statement A is false.

Q2-1: Select the correct option.

A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs for new inputs that it was not trained with.
B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1 neuron in the output has a total of 55 connections.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.
4. Statement B is true, Statement A is false.

First layer

Q2-2: Select the correct option.

A. The range of tanh activation function $\tanh (z)=2 \sigma(2 z)-1$ is $(-1,1)$.
B. Nominal features are usually represented using a thermometer encoding.

1. True, True
2. True, False
3. False, True
4. False, False

Q2-2: Select the correct option.

A. The range of tanh activation function $\tanh (z)=2 \sigma(2 z)-1$ is $(-1,1)$.
B. Nominal features are usually represented using a thermometer encoding.

1. True, True
2. True, False

Nominal features are usually represented using a 1 -of-k encoding.
3. False, True
4. False, False

Q3-1: Select the correct option.

A. The backpropagation learning algorithm is based on the gradient-descent method.
B. In backpropagation learning, we usually start with a small learning parameter η and slowly increase it during the learning process.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.
4. Statement B is true, Statement A is false.

Q3-1: Select the correct option.

A. The backpropagation learning algorithm is based on the gradient-descent method.
B. In backpropagation learning, we usually start with a small learning parameter η and slowly increase it during the learning process.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.
4. Statement B is true, Statement A is false.

Q3-2: Consider $w \in R$, the objective function to be minimized is the regularized loss $L(w)+\lambda w^{2}$. With $w_{t}=1, d L\left(w_{t}\right)=1$, step size $\eta=0.1, \lambda=2$, perform one step of gradient descent by computing the value of w_{t+1}. Hint: $w_{t+1}=w_{t}-\eta \nabla\left(L(w)+\lambda w^{2}\right)$

1. 0.5
2. 1
3. 1.5
4. 0.1

Q3-2: Consider $w \in R$, the objective function to be minimized is the regularized loss $L(w)+\lambda w^{2}$. With $w_{t}=1, d L\left(w_{t}\right)=1$, step size $\eta=0.1, \lambda=2$, perform one step of gradient descent by computing the value of w_{t+1}. Hint: $w_{t+1}=w_{t}-\eta \nabla\left(L(w)+\lambda w^{2}\right)$

1. 0.5
2. 1
3. 1.5
4. 0.1

$$
\begin{aligned}
& w_{t+1}=w_{t}-\eta d\left(L+\lambda w^{2}\right)=w_{t}-\eta d L\left(w_{t}\right)-\eta \lambda * 2 w_{t} \\
& =1-0.1-0.1 \times 2 \times 2=1-0.1-0.4=0.5
\end{aligned}
$$

