Q1-1: Consider Instance space X, Hypothesis space H, training examples D. Suppose that every h in our version space $VS_{H, D}$ is consistent with m training examples. Which of the following statement(s) is/are TRUE?

- A. The version space $VS_{H, D}$ is ε -exhausted with respect to c and D if every hypothesis h in $VS_{H, D}$ has training error < ε .
- B. "The probability that $VS_{H, D}$ is not ε -exhausted $\leq |H|e^{-\varepsilon m}$ " provides a bound for the probability that ANY learner will output a hypothesis h with error > ε .

- 1. Both the statements are TRUE.
- 2. Statement A is TRUE, but statement B is FALSE.
- 3. Statement A is FALSE, but statement B is TRUE.
- 4. Both the statements are FALSE.

Q1-1: Consider Instance space X, Hypothesis space H, training examples D. Suppose that every h in our version space $VS_{H, D}$ is consistent with m training examples. Which of the following statement(s) is/are TRUE?

- A. The version space $VS_{H, D}$ is ε -exhausted with respect to c and D if every hypothesis h in $VS_{H, D}$ has training error < ε .
- B. "The probability that $VS_{H, D}$ is not ε -exhausted $\leq |H|e^{-\varepsilon m}$ " provides a bound for the probability that ANY learner will output a hypothesis h with error > ε .

- 1. Both the statements are TRUE.
- 2. Statement A is TRUE, but statement B is FALSE.
- 3. Statement A is FALSE, but statement B is TRUE.
- 4. Both the statements are FALSE.

The version space VS_{H, D} is ϵ -exhausted with respect to c and D if every hypothesis h is VS_{H, D} has **true** error < ϵ

"The probability that $VS_{H, D}$ is not ε -exhausted \leq |H|e^{- ε m"} provides a bound for the probability that ANY **consistent** learner will output a hypothesis h with error > ε . Q1-2: We know that Probability that the version space is not ε -exhausted after *m* training examples is at most $|H|e^{-\varepsilon m}$ where symbols have their usual meanings. From this we can derive that if $error_{train}(h) = 0$, then with probability at least (1 - δ), $error_{true}(h) \leq 1/m * A$ where A is

- 1. $\ln (|H|) + \ln (\delta)$
- 2. In (|H|) + In (1/δ)
- 3. In (1/|H|) + In (δ)
- 4. ln (1/|H|) + ln (1/δ)

Q1-2: We know that Probability that the version space is not ε -exhausted after *m* training examples is at most $|H|e^{-\varepsilon m}$ where symbols have their usual meanings. From this we can derive that if $error_{train}(h) = 0$, then with probability at least (1 - δ), $error_{true}(h) \le 1/m * A$ where A is

- 1. $\ln (|H|) + \ln (\delta)$
- 2. ln (|H|) + ln (1/δ)
- 3. In (1/|H|) + In (δ)
- 4. ln (1/|H|) + ln (1/δ)

We can write the bound as follows:

 $Pr[(\exists h \text{ in } H) \text{ s.t. } (error_{train}(h) = 0) \text{ AND } (error_{true}(h) > \varepsilon)] \le |H|e^{-\varepsilon m} = \delta$

Hence, with at least probability $(1 - \delta)$, error_{true}(h) $\leq \varepsilon$, where ε can be obtained by solving $|H|e^{-\varepsilon m} = \delta$.

Q2-1: Which of the following statement(s) is/are TRUE?

- A. PAC analysis formalizes the learning task and allows for non-perfect learning.
- B. Finding a consistent hypothesis is easier for smaller concept classes.
- C. In PAC analysis, we are trying to bound training error of a hypothesis.
- 1. True, True, True
- 2. True, False, False
- 3. True, False, True
- 4. False, False, False

Q2-1: Which of the following statement(s) is/are TRUE?

- A. PAC analysis formalizes the learning task and allows for non-perfect learning.
- B. Finding a consistent hypothesis is easier for smaller concept classes.
- C. In PAC analysis, we are trying to bound training error of a hypothesis.
- 1. True, True, True
- 2. True, False, False
- 3. True, False, True
- 4. False, False, False

Q2-2: Similar to "PAC analysis example: learning decision trees", consider the case when each instance has *n* features and each feature has 3 possible values. Let learned hypotheses are DTs of depth 2 using only 2 variables. What is |H|? Note: nC2 = $\binom{n}{2}$

- 1. nC3 x 2⁶
- 2. nC3 x 2⁹
- 3. nC2 x 2⁹
- 4. nC2 x 2⁶

Q2-2: Similar to "PAC analysis example: learning decision trees", consider the case when each instance has *n* features and each feature has 3 possible values. Let learned hypotheses are DTs of depth 2 using only 2 variables. What is |H|? Note: nC2 = $\binom{n}{2}$

- 1. nC3 x 2⁶
- 2. nC3 x 2⁹
- 3. nC2 x 2⁹
- 4. nC2 x 2⁶

#possible split choices (choose 2 features out of n) = nC2
#leaves = 9. Each leaf has 2 possible labellings. So, #possible leaf
labellings = 2⁹

Q3-1: Which of the following statement(s) is/are TRUE?

- A. Agnostic PAC learnability requires learning a hypothesis with true error at most ε
- B. In the case of agnostic PAC learning, if $error_{train}(h_{best}) = 0$, then with probability at least (1 δ), $error_{true}(h_{best}) \le (1/2m)$ sqrt[In |H| + In(1/ δ)]
- 1. True, True
- 2. True, False
- 3. False, True
- 4. False, False

Q3-1: Which of the following statement(s) is/are TRUE?

- A. Agnostic PAC learnability requires learning a hypothesis with true error at most ε
- B. In the case of agnostic PAC learning, if $error_{train}(h_{best}) = 0$, then with probability at least (1)

- δ), error_{true}(h_{best}) \leq (1/2m) sqrt[In |H| + In(1/ δ)]

- 1. True, True
- 2. True, False
- 3. False, True
- 4. False, False

Being agnostic PAC learnable is a stronger condition, since for all distributions, we can get close to the optimal error.

We want to get the expression for ϵ in agnostic PAC learning case. Solve for ϵ using:

$$m \ge \frac{1}{2\varepsilon^2} \left(\ln|H| + \ln\left(\frac{1}{\delta}\right) \right)$$

Q3-2: What's the VC dimension of a decision stump in \mathbb{R}^2 ? A decision stump is of the form $f(x) = \operatorname{sign}(x_i > b)$ or $f(x) = \operatorname{sign}(x_i < b)$ for one feature x_i and some bias parameter b.

- 1. VC = 1
- 2. VC = 2
- 3. VC = 3
- 4. VC = 4

Q3-2: What's the VC dimension of a decision stump in \mathbb{R}^2 ? A decision stump is of the form $f(x) = \text{sign}(x_i > b)$ or $f(x) = \text{sign}(x_i < b)$ for one feature x_i and some bias parameter b. VC \geq 3: All possible labelings of 3 points can be shattered.

4. VC = 4

VC = 3: For all placements of 4 points, there exist a labeling that can't be shattered.

