

Goals for the lecture

you should understand the following concepts

- convolutional neural networks (CNN)
- convolution and its advantage
- pooling and its advantage

Convolutional neural networks

- Strong empirical application performance
- Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers

$$h = \sigma(W^T x + b)$$

for a specific kind of weight matrix W

Convolution

Convolution: discrete version

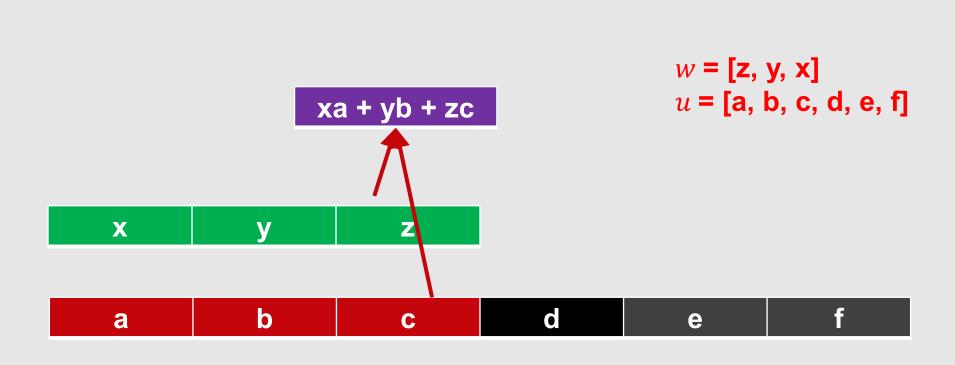
• Given array u_t and w_t , their convolution is a function s_t

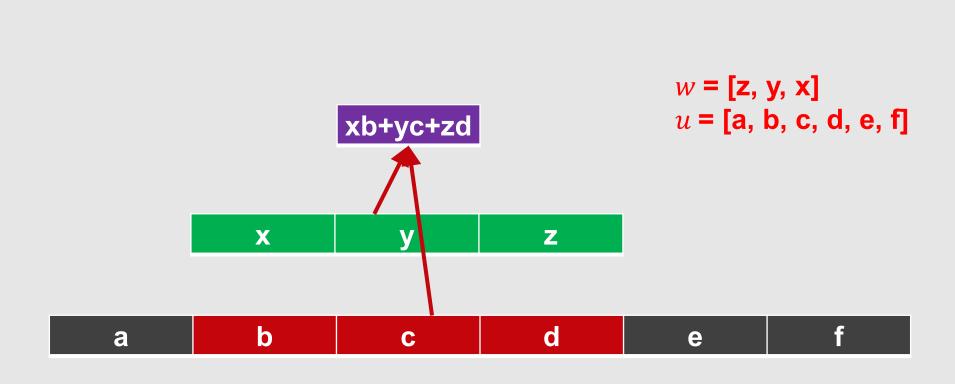
$$s_t = \sum_{a = -\infty}^{+\infty} u_a w_{t-a}$$

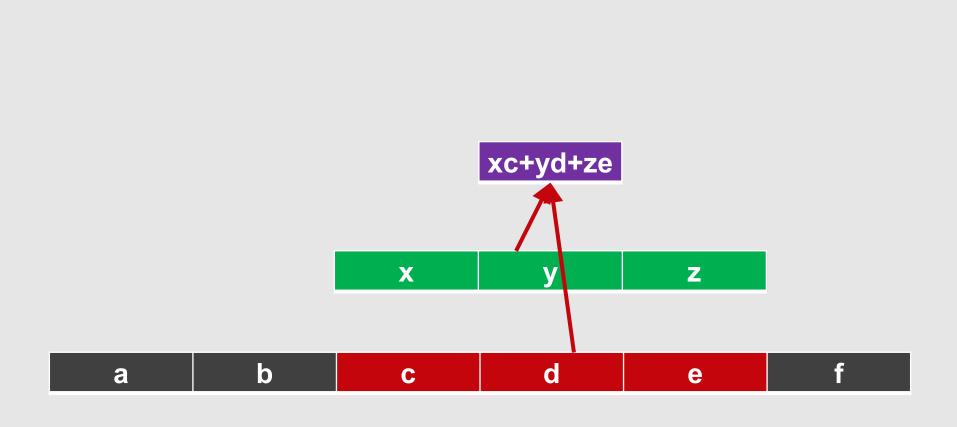
Written as

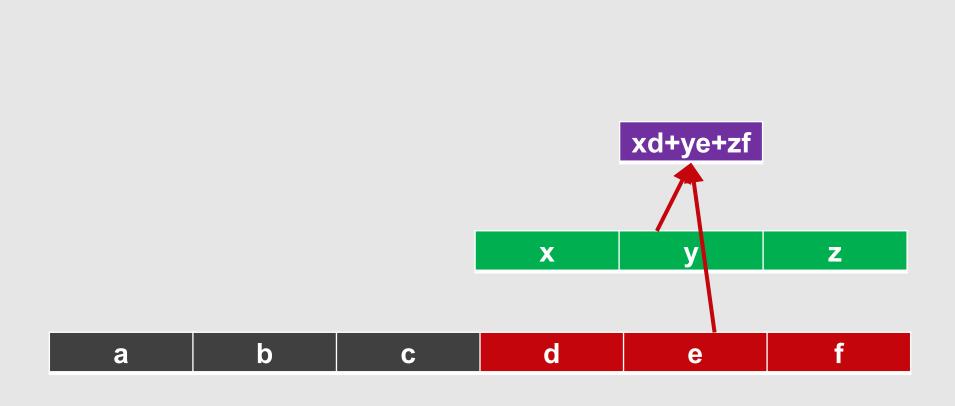
$$s = (u * w)$$
 or $s_t = (u * w)_t$

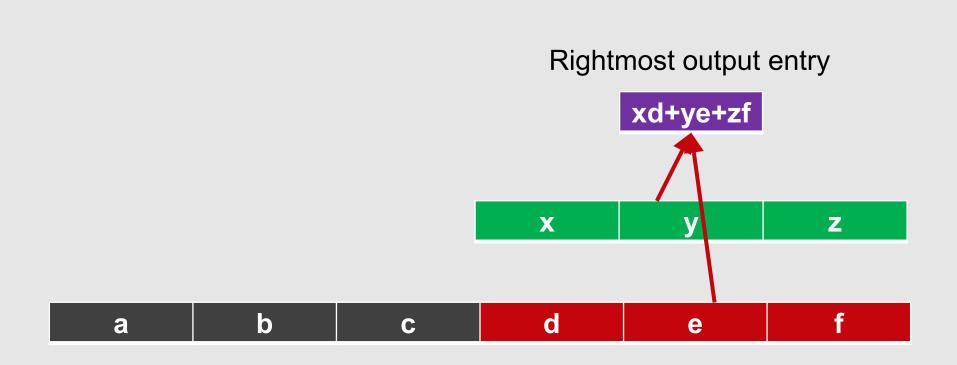
• When u_t or w_t is not defined, assumed to be 0



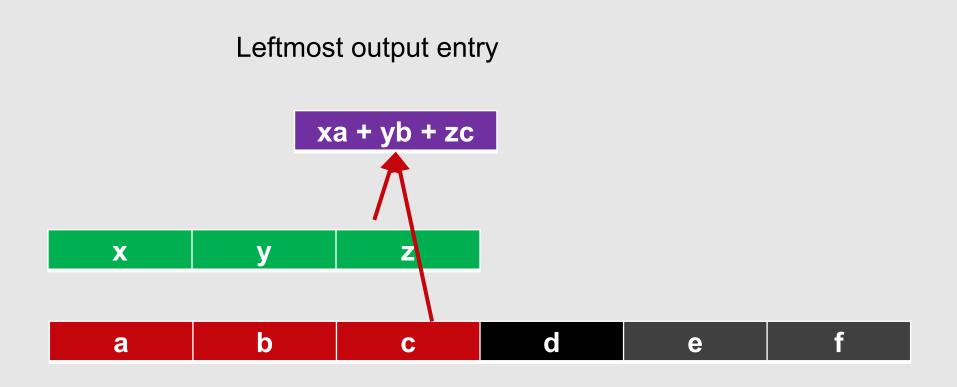




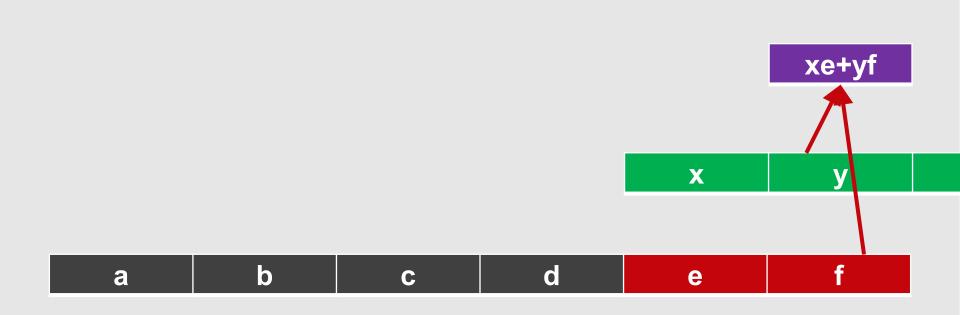




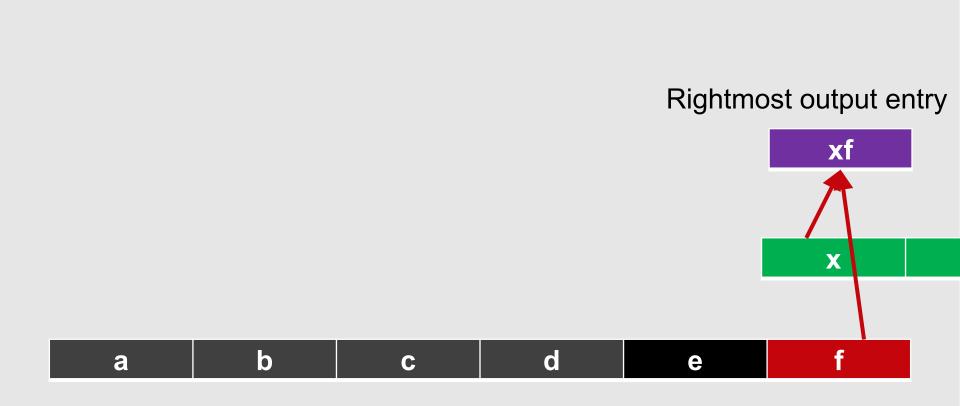
Option 1: VALID, stop when hit the boundary



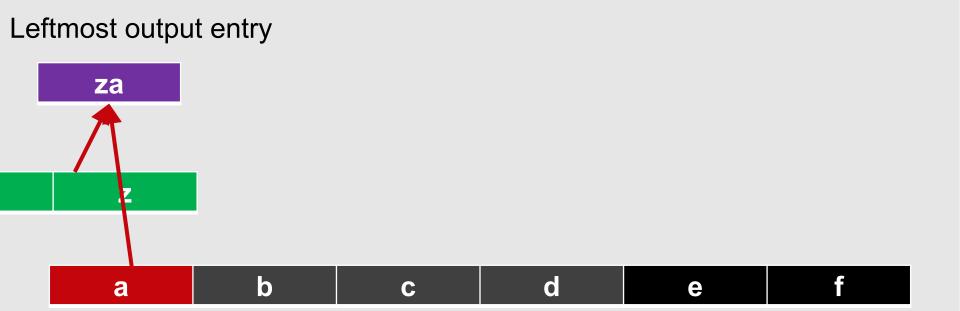
Option 1: VALID, stop when hit the boundary



Option 2: SAME, stop when no overlap



Option 2: SAME, stop when no overlap



Option 2: SAME, stop when no overlap

Illustration 1: stride (#positions sliding per step) 🔞

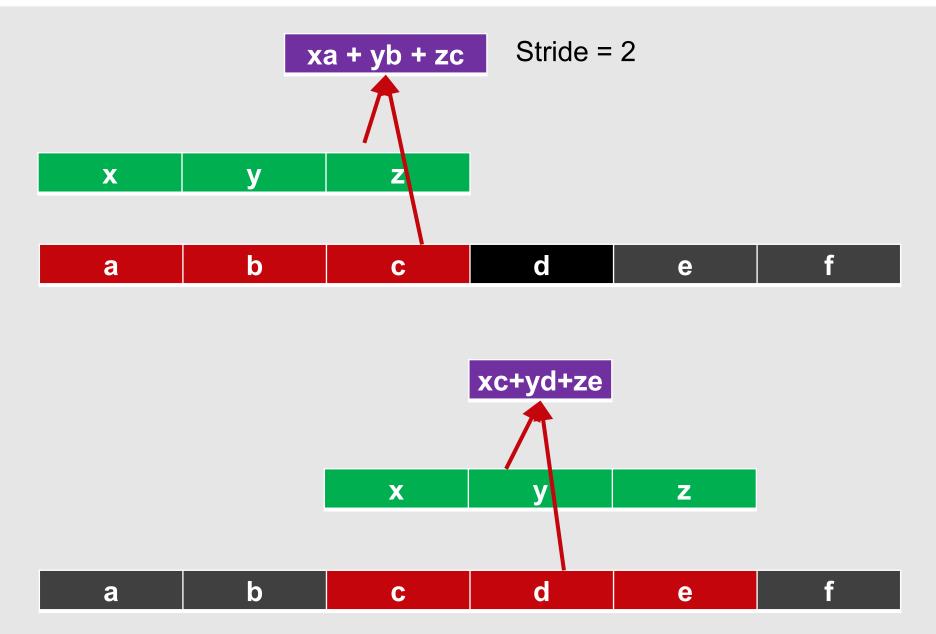
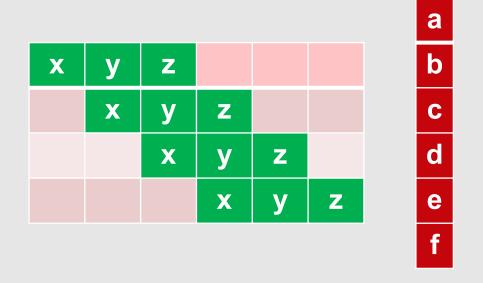
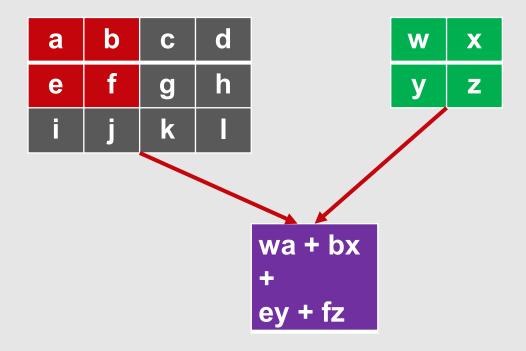


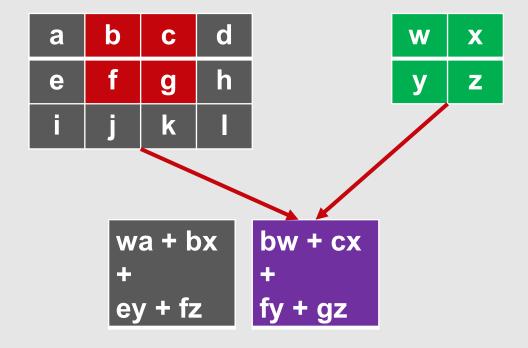
Illustration 1 as matrix multiplication

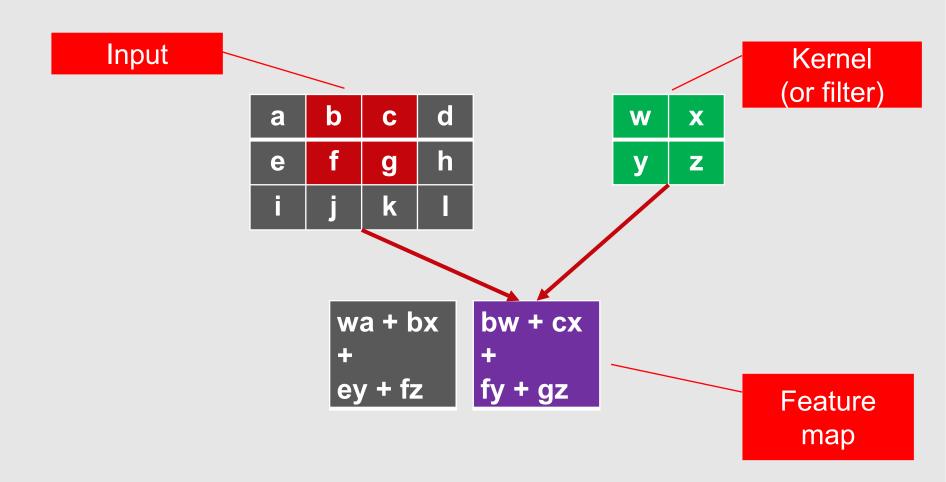


When using VALID, and Stride=1

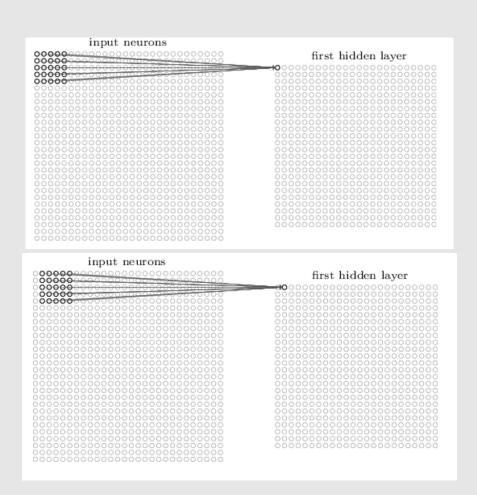
Illustration 2: two dimensional case







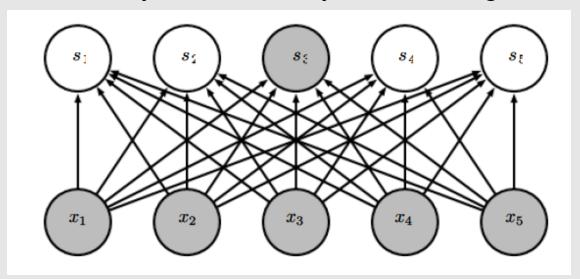
- All the units used the same set of weights (kernel)
- The units detect the same "feature" but at different locations



[Figure from neuralnetworksanddeeplearning.com]

Advantage: sparse interaction

Fully connected layer, $m \times n$ edges

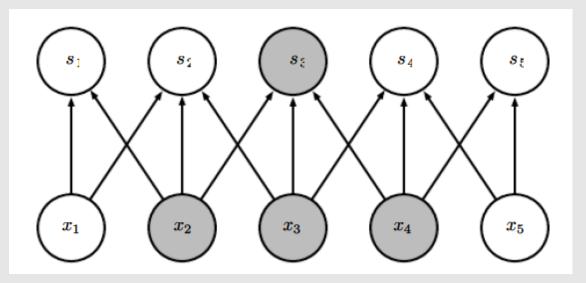


m output nodes

n input nodes

Advantage: sparse interaction

Convolutional layer, $\leq m \times k$ edges



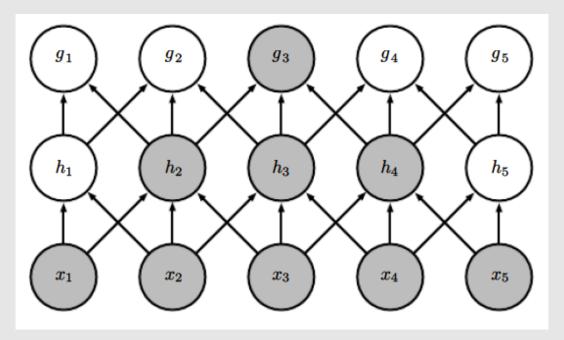
m output nodes

k kernel size

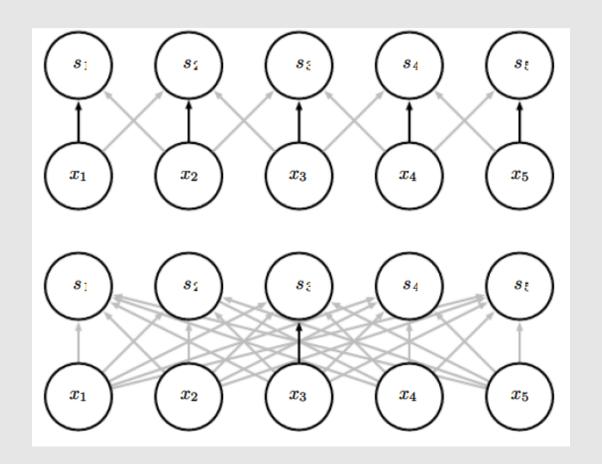
n input nodes

Advantage: sparse interaction

Multiple convolutional layers: larger receptive field



Advantage: parameter sharing/weight tying



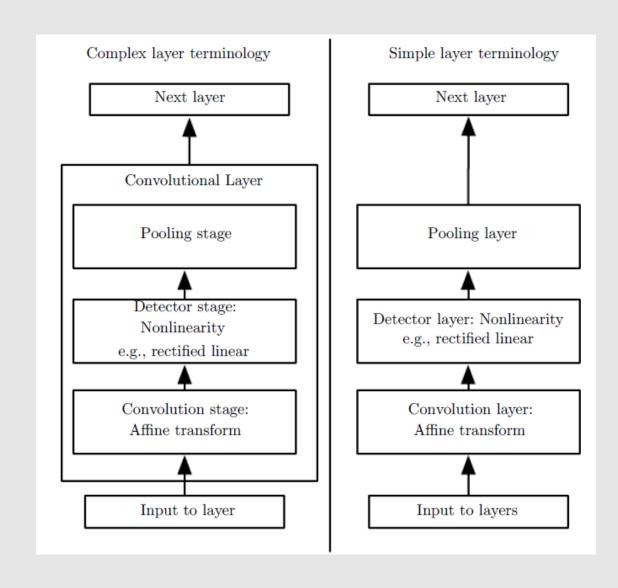
The same kernel are used repeatedly. E.g., the black edge is the same weight in the kernel.

Advantage: equivariant representations

- Equivariant: transforming the input = transforming the output
- Example: input is an image, transformation is shifting
- Convolution(shift(input)) = shift(Convolution(input))
- Useful when care only about the existence of a pattern, rather than the location

Pooling

Terminology



Pooling

• Summarizing the input (i.e., output the max of the input)

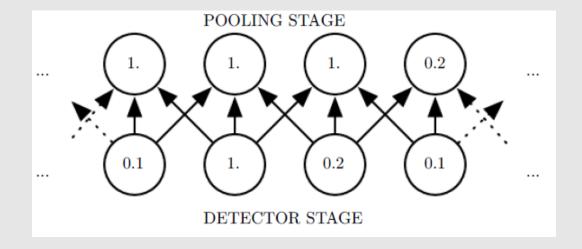


Figure from *Deep Learning*, by Goodfellow, Bengio, and Courville

 Each unit in a pooling layer outputs a max, or similar function, of a subset of the units in the previous layer

 Variants: Max-pooling, Average-pooling,

```
hidden neurons (output from feature map)

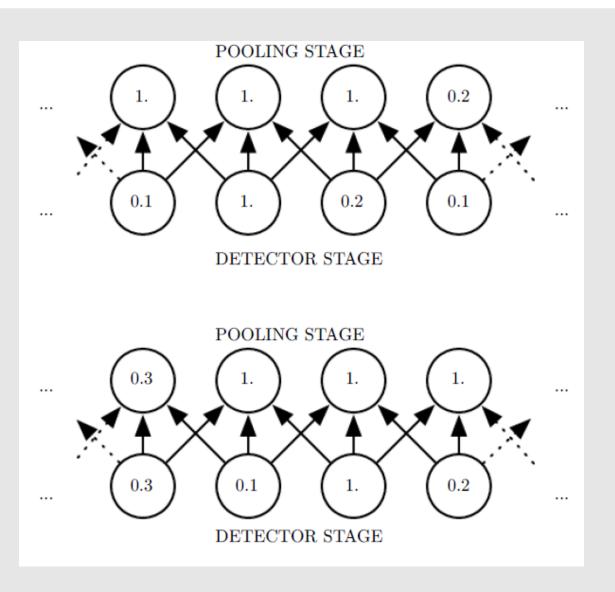
max-pooling units

max-pooling units
```

[Figure from neuralnetworksanddeeplearning.com]

Advantage

Induce invariance



Motivation from neuroscience

 David Hubel and Torsten Wiesel studied early visual system in human brain (V1 or primary visual cortex), and won Nobel prize for this

- V1 properties
 - 2D spatial arrangement
 - Simple cells: inspire convolution layers
 - Complex cells: inspire pooling layers

Example: LeNet

- Proposed in "Gradient-based learning applied to document recognition", by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998
- Apply convolution on 2D images (MNIST) and use backpropagation
- Structure: 2 convolutional layers (with pooling) + 3 fully connected layers
 - Input size: 32x32x1
 - Convolution kernel size: 5x5
 - Pooling: 2x2

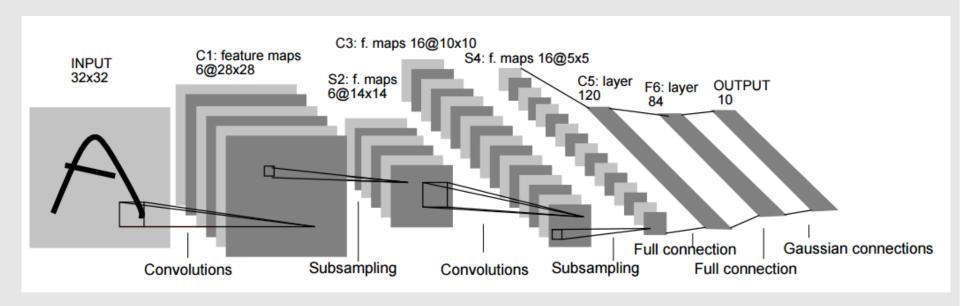


Figure from *Gradient-based learning applied to document recognition,* by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

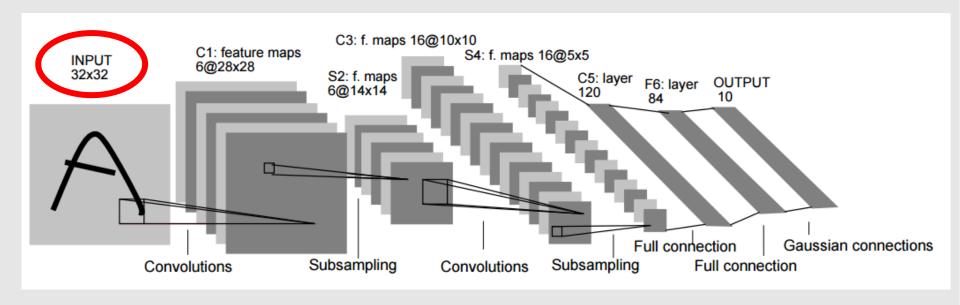


Figure from *Gradient-based learning applied to document recognition,* by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

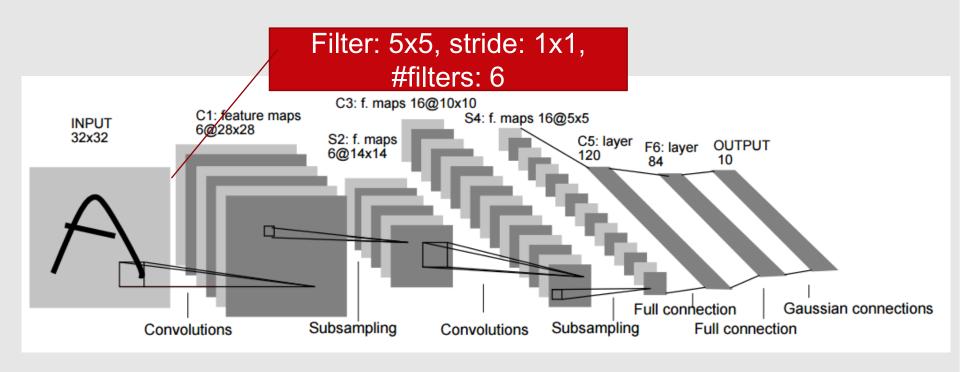
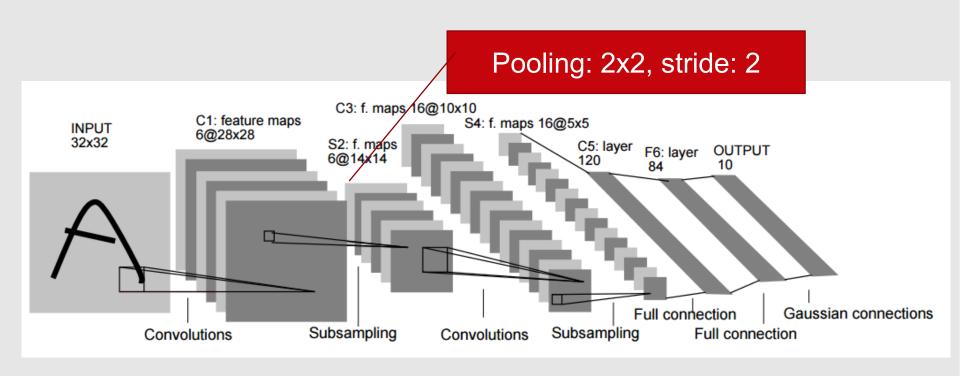
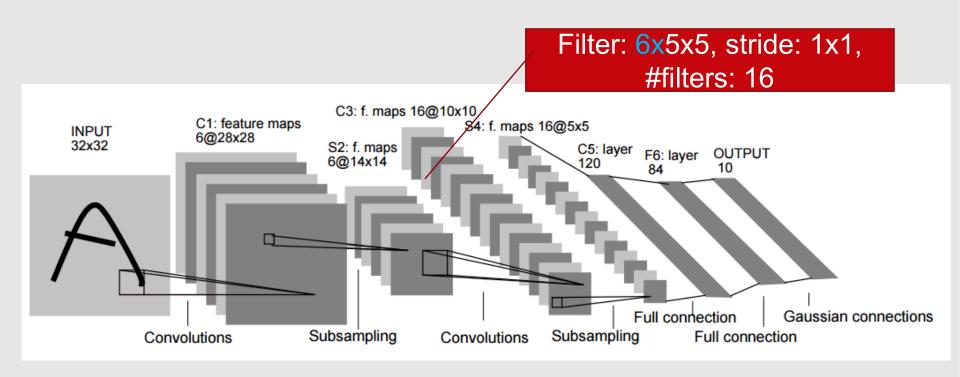
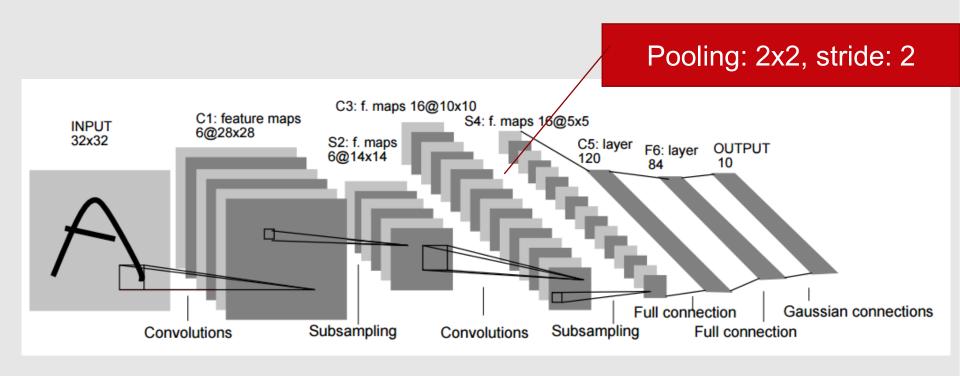
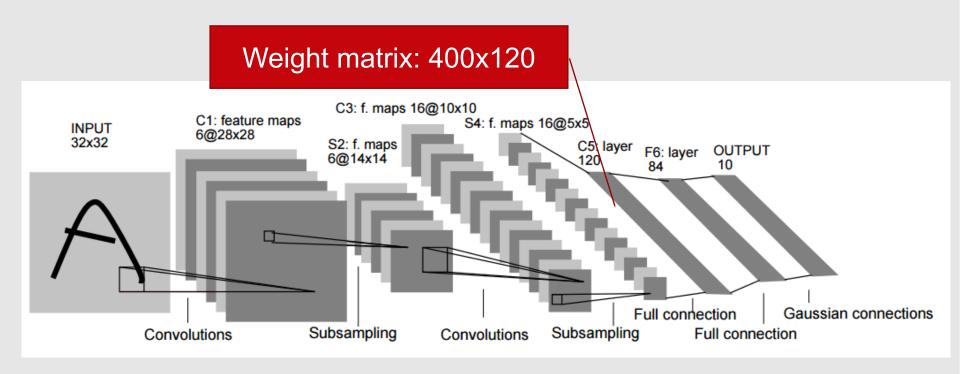


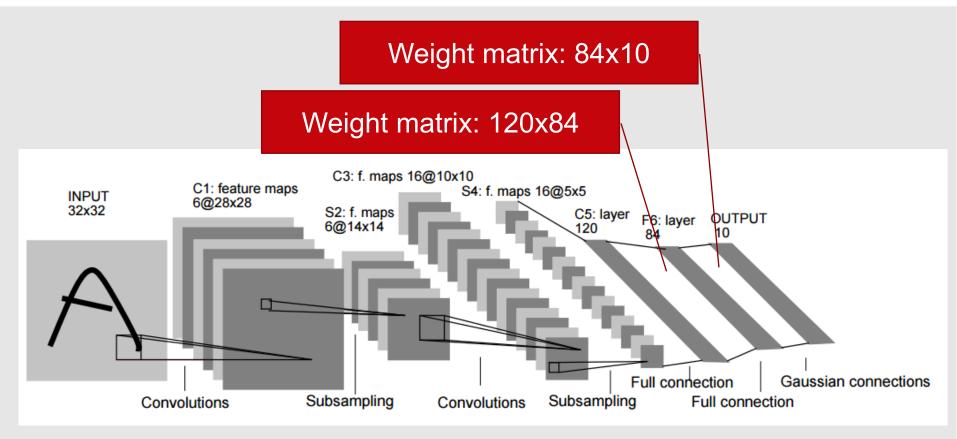
Figure from *Gradient-based learning applied to document recognition,* by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner











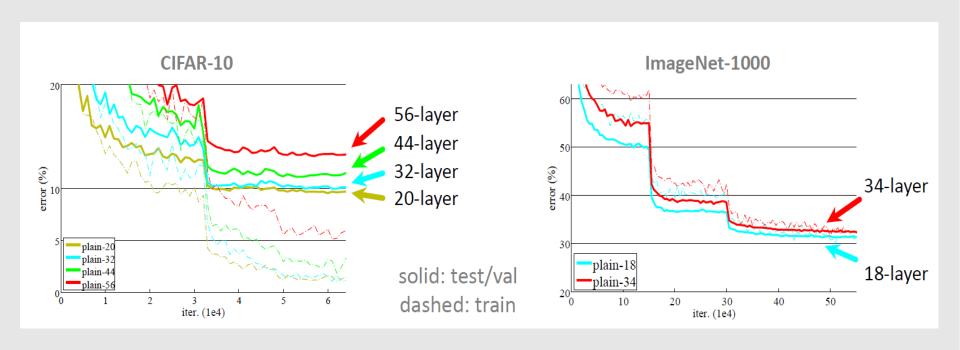
Optional: ResNet

ResNet

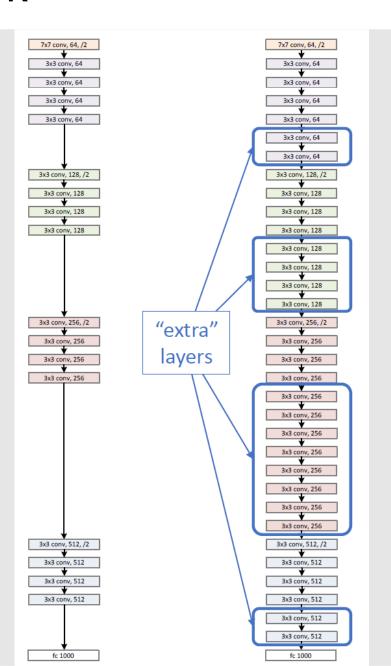
- Proposed in "Deep residual learning for image recognition" by He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. In Proceedings of the IEEE conference on computer vision and pattern recognition,. 2016.
- Apply very deep networks with repeated residue blocks
- Structure: simply stacking residue blocks

Plain Network

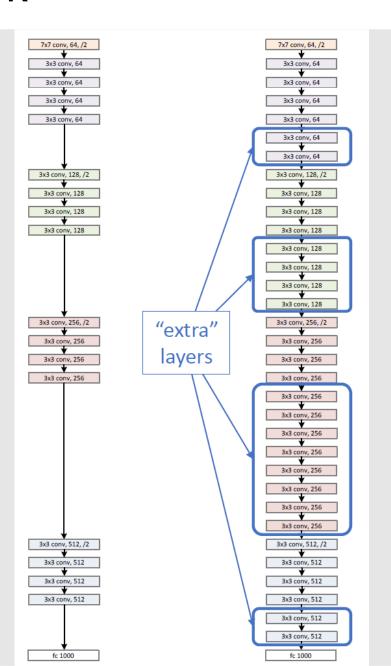
- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets



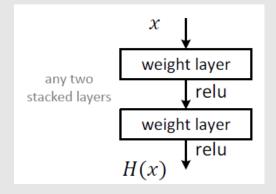
- Naïve solution
 - If extra layers are an identity mapping, then a training errors does not increase



- Deeper networks also maintain the tendency of results
 - Features in same level will be almost same
 - An amount of changes is fixed
 - Adding layers makes smaller differences
 - Optimal mappings are closer to an identity

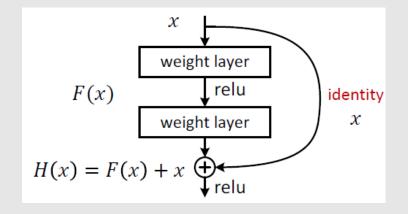


- Plain block
 - Difficult to make identity mapping because of multiple non-linear layers



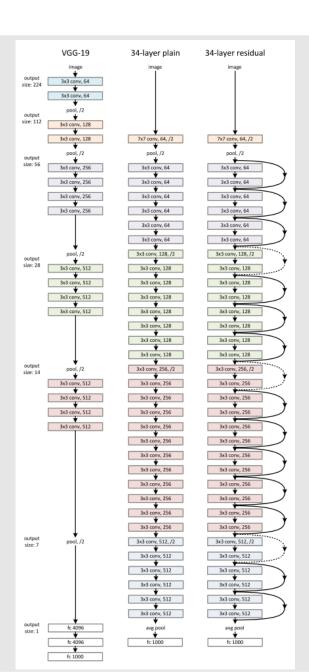
Residual block

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations
- -> Appropriate for treating perturbation as keeping a base information



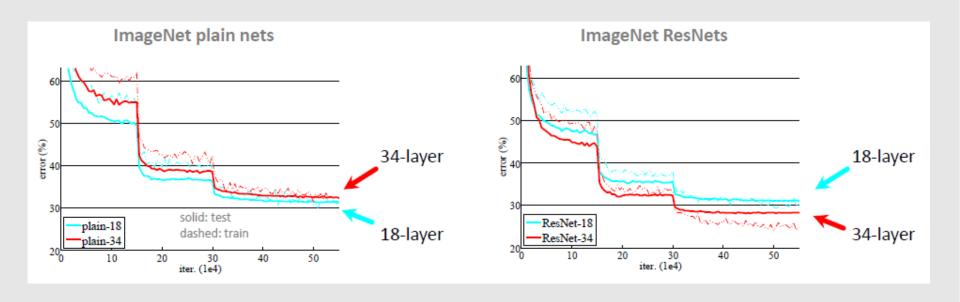
Network Design

- Basic design (VGG-style)
 - All 3x3 conv (almost)
 - Spatial size/2 => #filters x2
 - Batch normalization
 - Simple design, just deep
- Other remarks
 - No max pooling (almost)
 - No hidden fc
 - No dropout



Results

- Deep Resnets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

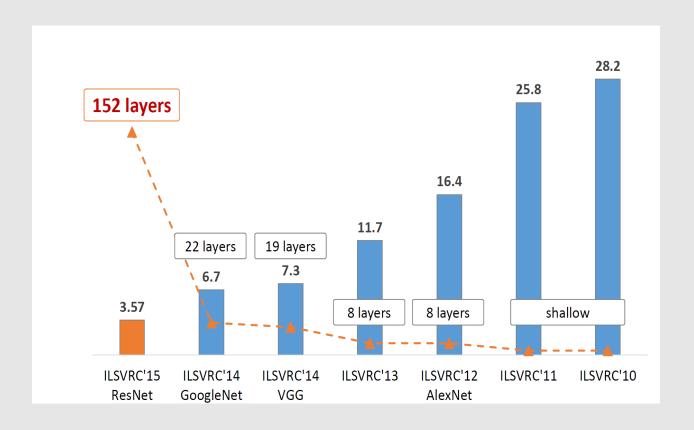


Results

- 1st places in all five main tracks in "ILSVRC & COCO 2015 Competitions"
 - ImageNet Classification
 - ImageNet Detection
 - ImageNet Localization
 - COCO Detection
 - COCO Segmentation

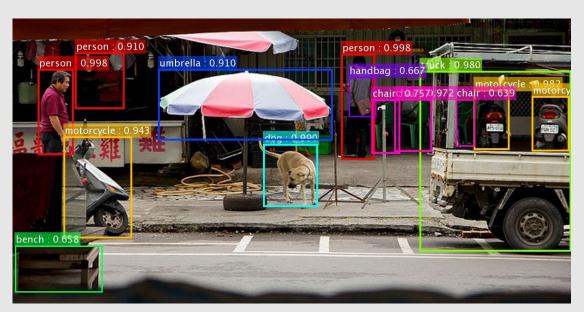
Quantitative Results

ImageNet Classification



Qualitative Result

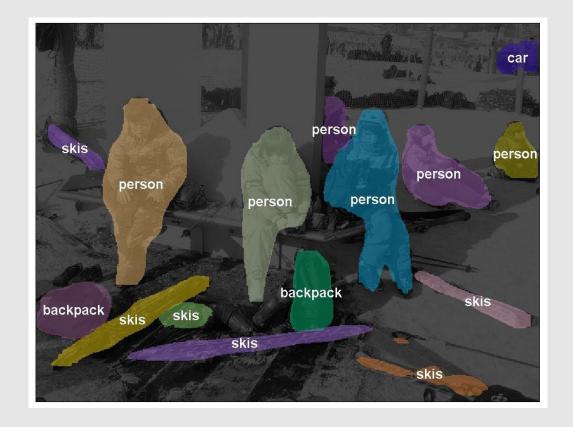
- Object detection
 - Faster R-CNN + ResNet



Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015. Jifeng Dai, Kaiming He, & Jian Sun. "Instance-aware Semantic Segmentation via Multi-task Network Cascades". arXiv 2015.

Qualitative Results

Instance Segmentation



Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, Tom Dietterich, and Pedro Domingos.

