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Goals for the lecture

you should understand the following concepts
• autoencoder
• restricted Boltzmann machine (RBM)
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Autoencoder



Autoencoder

• Neural networks trained to attempt to copy its input to its output

• Contain two parts:
• Encoder: map the input to a hidden representation
• Decoder: map the hidden representation to the output



Autoencoder

ℎ

𝑥𝑥 𝑟𝑟

Hidden representation (the code)

ReconstructionInput



Autoencoder

ℎ

𝑥𝑥 𝑟𝑟

Decoder 𝑔𝑔(⋅)Encoder 𝑓𝑓(⋅)

ℎ = 𝑓𝑓 𝑥𝑥 , 𝑟𝑟 = 𝑔𝑔 ℎ = 𝑔𝑔(𝑓𝑓 𝑥𝑥 )



Why want to copy input to output

• Not really care about copying

• Interesting case: NOT able to copy exactly but strive to do so
• Autoencoder forced to select which aspects to preserve and 

thus hopefully can learn useful properties of the data

• Historical note: goes back to (LeCun, 1987; Bourlard and Kamp, 
1988; Hinton and Zemel, 1994).



Undercomplete autoencoder

• Constrain the code to have smaller dimension than the input
• Training: minimize a loss function

𝐿𝐿 𝑥𝑥, 𝑟𝑟 = 𝐿𝐿(𝑥𝑥,𝑔𝑔 𝑓𝑓 𝑥𝑥 )

ℎ𝑥𝑥 𝑟𝑟



Undercomplete autoencoder

• Constrain the code to have smaller dimension than the input
• Training: minimize a loss function

𝐿𝐿 𝑥𝑥, 𝑟𝑟 = 𝐿𝐿(𝑥𝑥,𝑔𝑔 𝑓𝑓 𝑥𝑥 )

• Special case: 𝑓𝑓,𝑔𝑔 linear, 𝐿𝐿 mean square error
• Reduces to Low Rank Approximation



Undercomplete autoencoder

• What about nonlinear encoder and decoder?

• Capacity should not be too large
• Suppose given data 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛

• Encoder maps 𝑥𝑥𝑖𝑖 to 𝑖𝑖
• Decoder maps 𝑖𝑖 to 𝑥𝑥𝑖𝑖

• One dim ℎ suffices for perfect reconstruction



Regularization

• Typically NOT 
• Keeping the encoder/decoder shallow or
• Using small code size

• Regularized autoencoders: add regularization term that 
encourages the model to have other properties

• Sparsity of the representation (sparse autoencoder)
• Robustness to noise or to missing inputs (denoising autoencoder)



Sparse autoencoder

• Constrain the code to have sparsity
• Training: minimize a loss function

𝐿𝐿𝑅𝑅 = 𝐿𝐿(𝑥𝑥,𝑔𝑔 𝑓𝑓 𝑥𝑥 ) + 𝑅𝑅(ℎ)

ℎ𝑥𝑥 𝑟𝑟



Sparse autoencoder

• Constrain the code to have sparsity

• Laplacian prior: 𝑝𝑝 ℎ = 𝜆𝜆
2

exp(−𝜆𝜆
2
ℎ 1)

• Training: minimize a loss function

𝐿𝐿𝑅𝑅 = 𝐿𝐿(𝑥𝑥,𝑔𝑔 𝑓𝑓 𝑥𝑥 ) + 𝜆𝜆 ℎ 1



Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝𝑝(ℎ, 𝑥𝑥)
• MLE on 𝑥𝑥

log𝑝𝑝(𝑥𝑥) = log�
ℎ′
𝑝𝑝(ℎ′, 𝑥𝑥)

•  Hard to sum over ℎ′



Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝𝑝(ℎ, 𝑥𝑥)
• MLE on 𝑥𝑥

max log 𝑝𝑝(𝑥𝑥) = max log�
ℎ′
𝑝𝑝(ℎ′, 𝑥𝑥)

• Approximation: suppose ℎ = 𝑓𝑓(𝑥𝑥) gives the most likely hidden 
representation, and ∑ℎ′ 𝑝𝑝(ℎ′, 𝑥𝑥) can be approximated by 𝑝𝑝(ℎ, 𝑥𝑥)



Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝𝑝(ℎ, 𝑥𝑥)
• Approximate MLE on 𝑥𝑥,ℎ = 𝑓𝑓(𝑥𝑥)

max log 𝑝𝑝(ℎ, 𝑥𝑥) = max log𝑝𝑝(𝑥𝑥|ℎ) + log 𝑝𝑝(ℎ)

Regularization

Loss



Denoising autoencoder

• Traditional autoencoder: encourage to learn 𝑔𝑔 𝑓𝑓 ⋅ to be 
identity 

• Denoising : minimize a loss function

𝐿𝐿 𝑥𝑥, 𝑟𝑟 = 𝐿𝐿(𝑥𝑥,𝑔𝑔 𝑓𝑓 �𝑥𝑥 )
where �𝑥𝑥 is 𝑥𝑥 + 𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛



Restricted Boltzmann 
Machine



Boltzmann machine

• Introduced by Ackley et al. (1985)

• General “connectionist” approach to learning arbitrary 
probability distributions over binary vectors

• Special case of energy model:  𝑝𝑝 𝑥𝑥 = exp(−𝐸𝐸 𝑥𝑥 )
𝑍𝑍



Boltzmann machine

• Energy model:  

𝑝𝑝 𝑥𝑥 =
exp(−𝐸𝐸 𝑥𝑥 )

𝑍𝑍
• Boltzmann machine: special case of energy model with

𝐸𝐸 𝑥𝑥 = −𝑥𝑥𝑇𝑇𝑈𝑈𝑥𝑥 − 𝑏𝑏𝑇𝑇𝑥𝑥
where 𝑈𝑈 is the weight matrix and 𝑏𝑏 is the bias parameter



Boltzmann machine with latent variables

• Some variables are not observed

𝑥𝑥 = 𝑥𝑥𝑣𝑣, 𝑥𝑥ℎ , 𝑥𝑥𝑣𝑣 visible, 𝑥𝑥ℎ hidden

𝐸𝐸 𝑥𝑥 = −𝑥𝑥𝑣𝑣𝑇𝑇𝑅𝑅𝑥𝑥𝑣𝑣 − 𝑥𝑥𝑣𝑣𝑇𝑇𝑊𝑊𝑥𝑥ℎ − 𝑥𝑥ℎ𝑇𝑇𝑆𝑆𝑥𝑥ℎ − 𝑏𝑏𝑇𝑇𝑥𝑥𝑣𝑣 − 𝑐𝑐𝑇𝑇𝑥𝑥ℎ

• Universal approximator of probability mass functions



Maximum likelihood 

• Suppose we are given data 𝑋𝑋 = 𝑥𝑥𝑣𝑣1, 𝑥𝑥𝑣𝑣2, … , 𝑥𝑥𝑣𝑣𝑛𝑛

• Maximum likelihood is to maximize
log 𝑝𝑝 𝑋𝑋 = �

𝑖𝑖

log 𝑝𝑝(𝑥𝑥𝑣𝑣𝑖𝑖 )

where
𝑝𝑝 𝑥𝑥𝑣𝑣 = �

𝑥𝑥ℎ

𝑝𝑝(𝑥𝑥𝑣𝑣, 𝑥𝑥ℎ) = �
𝑥𝑥ℎ

1
𝑍𝑍

exp(−𝐸𝐸(𝑥𝑥𝑣𝑣, 𝑥𝑥ℎ))

• 𝑍𝑍 = ∑ exp(−𝐸𝐸(𝑥𝑥𝑣𝑣, 𝑥𝑥ℎ)): partition function, difficult to compute 



Restricted Boltzmann machine

• Invented under the name harmonium (Smolensky, 1986)
• Popularized by Hinton and collaborators to Restricted 

Boltzmann machine



Restricted Boltzmann machine

• Special case of Boltzmann machine with latent variables:  

𝑝𝑝 𝑣𝑣,ℎ =
exp(−𝐸𝐸 𝑣𝑣,ℎ )

𝑍𝑍
where the energy function is

𝐸𝐸 𝑣𝑣,ℎ = −𝑣𝑣𝑇𝑇𝑊𝑊ℎ − 𝑏𝑏𝑇𝑇𝑣𝑣 − 𝑐𝑐𝑇𝑇ℎ
with the weight matrix 𝑊𝑊 and the bias 𝑏𝑏, 𝑐𝑐

• Partition function
𝑍𝑍 = �

𝑣𝑣

�
ℎ

exp(−𝐸𝐸 𝑣𝑣,ℎ )



Restricted Boltzmann machine

Figure from Deep Learning, 
Goodfellow, Bengio and Courville



Restricted Boltzmann machine

• Conditional distribution is factorial

𝑝𝑝 ℎ|𝑣𝑣 =
𝑝𝑝(𝑣𝑣,ℎ)
𝑝𝑝(𝑣𝑣)

= �
𝑗𝑗

𝑝𝑝(ℎ𝑗𝑗|𝑣𝑣)

and
𝑝𝑝 ℎ𝑗𝑗 = 1|𝑣𝑣 = 𝜎𝜎 𝑐𝑐𝑗𝑗 + 𝑣𝑣𝑇𝑇𝑊𝑊:,𝑗𝑗

is logistic function



Restricted Boltzmann machine

• Similarly,
𝑝𝑝 𝑣𝑣|ℎ =

𝑝𝑝(𝑣𝑣,ℎ)
𝑝𝑝(ℎ)

= �
𝑖𝑖

𝑝𝑝(𝑣𝑣𝑖𝑖|ℎ)

and
𝑝𝑝 𝑣𝑣𝑖𝑖 = 1|ℎ = 𝜎𝜎 𝑏𝑏𝑖𝑖 + 𝑊𝑊𝑖𝑖,:ℎ

is logistic function



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, 

Tom Dietterich, Pedro Domingos, Geoffrey Hinton, and Ian 
Goodfellow.
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