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Goals for the lecture

you should understand the following concepts
• error decomposition
• bias-variance tradeoff
• PAC learning framework



Error Decomposition



How to analyze the generalization? 

• Key quantity we care in machine learning: the error on 
the future data points (i.e., the expected error on the 
whole distribution)

• Divide the analysis of the expected error into steps:
• What if full information (i.e., infinite data) and full 

computational power (i.e., can do optimization 
optimally)?

• What if finite data but full computational power?
• What if finite data and finite computational power?

• Example: error decomposition for prediction in 
supervised learning
Bottou, Léon, and Olivier Bousquet. "The tradeoffs of large scale 
learning." Advances in neural information processing systems. 2008.



Error/risk decomposition

• ℎ∗: the optimal function 
(Bayes classifier)

• ℎ𝑜𝑜𝑜𝑜𝑜𝑜: the optimal hypothesis 
on the data distribution

• �ℎ𝑜𝑜𝑜𝑜𝑜𝑜: the optimal hypothesis 
on the training data

• �ℎ: the hypothesis found by 
the learning algorithm

ℎ∗
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Hypothesis class 𝐻𝐻



Error/risk decomposition

𝑒𝑒𝑒𝑒𝑒𝑒 �ℎ − 𝑒𝑒𝑒𝑒𝑒𝑒 ℎ∗

= 𝑒𝑒𝑒𝑒𝑒𝑒(ℎ𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑒𝑒𝑒𝑒𝑒𝑒 ℎ∗

+ 𝑒𝑒𝑒𝑒𝑒𝑒(�ℎ𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑒𝑒𝑒𝑒𝑒𝑒(ℎ𝑜𝑜𝑜𝑜𝑜𝑜)

+ 𝑒𝑒𝑒𝑒𝑒𝑒 �ℎ − 𝑒𝑒𝑒𝑒𝑒𝑒(�ℎ𝑜𝑜𝑜𝑜𝑜𝑜)
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Error/risk decomposition

Approximation error

Estimation error

Optimization error

“A fundamental theorem of machine learning”

𝑒𝑒𝑒𝑒𝑒𝑒 �ℎ − 𝑒𝑒𝑒𝑒𝑒𝑒 ℎ∗

= 𝑒𝑒𝑒𝑒𝑒𝑒(ℎ𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑒𝑒𝑒𝑒𝑒𝑒 ℎ∗

+ 𝑒𝑒𝑒𝑒𝑒𝑒(�ℎ𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑒𝑒𝑒𝑒𝑒𝑒(ℎ𝑜𝑜𝑜𝑜𝑜𝑜)

+ 𝑒𝑒𝑒𝑒𝑒𝑒 �ℎ − 𝑒𝑒𝑒𝑒𝑒𝑒(�ℎ𝑜𝑜𝑜𝑜𝑜𝑜)



Error/risk decomposition

𝑒𝑒𝑒𝑒𝑒𝑒 �ℎ − 𝑒𝑒𝑒𝑒𝑒𝑒 ℎ∗

= 𝑒𝑒𝑒𝑒𝑒𝑒(ℎ𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑒𝑒𝑒𝑒𝑒𝑒 ℎ∗

+ 𝑒𝑒𝑒𝑒𝑒𝑒(�ℎ𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑒𝑒𝑒𝑒𝑒𝑒(ℎ𝑜𝑜𝑜𝑜𝑜𝑜)

+ 𝑒𝑒𝑒𝑒𝑒𝑒 �ℎ − 𝑒𝑒𝑒𝑒𝑒𝑒(�ℎ𝑜𝑜𝑜𝑜𝑜𝑜)

• approximation error: due to 
problem modeling (the choice of 
hypothesis class)

• estimation error: due to finite 
data

• optimization error: due to 
imperfect optimization



More on estimation error

𝑒𝑒𝑒𝑒𝑒𝑒(�ℎ𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑒𝑒𝑒𝑒𝑒𝑒(ℎ𝑜𝑜𝑜𝑜𝑜𝑜)

= 𝑒𝑒𝑒𝑒𝑒𝑒(�ℎ𝑜𝑜𝑜𝑜𝑜𝑜) − �𝑒𝑒𝑒𝑒𝑒𝑒 (�ℎ𝑜𝑜𝑜𝑜𝑜𝑜)

+ �𝑒𝑒𝑒𝑒𝑒𝑒 (�ℎ𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑒𝑒𝑒𝑒𝑒𝑒(ℎ𝑜𝑜𝑜𝑜𝑜𝑜)

≤ 𝑒𝑒𝑒𝑒𝑒𝑒(�ℎ𝑜𝑜𝑜𝑜𝑜𝑜) − �𝑒𝑒𝑒𝑒𝑒𝑒 (�ℎ𝑜𝑜𝑜𝑜𝑜𝑜)

+ �𝑒𝑒𝑒𝑒𝑒𝑒 (ℎ𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑒𝑒𝑒𝑒𝑒𝑒(ℎ𝑜𝑜𝑜𝑜𝑜𝑜)

≤ 2 sup
ℎ∈𝐻𝐻

|𝑒𝑒𝑒𝑒𝑒𝑒(ℎ) − �𝑒𝑒𝑒𝑒𝑒𝑒(ℎ)|



Another (simpler) decomposition

𝑒𝑒𝑒𝑒𝑒𝑒 �ℎ = �𝑒𝑒𝑒𝑒𝑒𝑒 �ℎ + 𝑒𝑒𝑒𝑒𝑒𝑒 �ℎ − �𝑒𝑒𝑒𝑒𝑒𝑒 �ℎ

≤ �𝑒𝑒𝑒𝑒𝑒𝑒 �ℎ + sup
ℎ∈𝐻𝐻

|𝑒𝑒𝑒𝑒𝑒𝑒(ℎ) − �𝑒𝑒𝑒𝑒𝑒𝑒(ℎ)|

• The training error �𝑒𝑒𝑒𝑒𝑒𝑒 �ℎ is what we can compute
• Need to control the generalization gap

Generalization gap



Bias-Variance Tradeoff



Defining bias and variance

• consider the task of learning a regression model           
given a training set

• a natural measure of the error of f is

𝐸𝐸 𝑦𝑦 − 𝑓𝑓(𝐱𝐱; 𝐷𝐷) 2|𝐷𝐷

where the expectation is taken with respect to the 
real-world distribution of instances

indicates the
dependency of
model on D

{ }),(),...,,( )()()1()1( mm yxyxD =



Defining bias and variance

• further consider a fixed 𝐱𝐱
• this can be rewritten as:

noise: variance of y given x;
doesn’t depend on D or f

error of f as a predictor of y



Defining bias and variance

variance

bias

• bias: if on average f (x; D) differs from E [y | x] then f (x; D) is a biased 
estimator of E [y | x] 

• variance: f (x; D) may be sensitive to D and vary a lot from its 
expected value

• now consider the expectation (over different data sets D) for the 
second term



Bias/variance for polynomial interpolation

• the 1st order 
polynomial has high 
bias, low variance

• 50th order polynomial 
has low bias, high 
variance

• 4th order polynomial 
represents a good 
trade-off



Bias/variance trade-off for k-NN regression

• consider using k-NN regression to learn a model of this 
surface in a 2-dimensional feature space



bias for 1-NN

variance for 1-NN

variance for 10-NN

bias for 10-NN

darker pixels
correspond to 
higher values

Bias/variance trade-off for k-NN regression



Bias/variance trade-off

• consider k-NN applied 
to digit recognition



Bias/variance discussion
• predictive error has two controllable components

• expressive/flexible learners reduce bias, but increase 
variance

• for many learners we can trade-off these two components 
(e.g. via our selection of k in k-NN)

• the optimal point in this trade-off depends on the particular 
problem domain and training set size

• this is not necessarily a strict trade-off; e.g. with ensembles 
we can often reduce bias and/or variance without increasing 
the other term



Bias/variance discussion

the bias/variance analysis 
• helps explain why simple learners can outperform more 

complex ones
• helps understand and avoid overfitting



PAC Learning Theory



PAC learning

• Overfitting happens because training error is a poor 
estimate of generalization error
→ Can we infer something about generalization error 

from training error?

• Overfitting happens when the learner doesn’t see 
enough training instances
→ Can we estimate how many instances are enough?



Learning setting 

instance space 𝒳𝒳

+
+

+
-

-

-

• set of instances 𝒳𝒳
• set of hypotheses (models) H
• set of possible target concepts C
• unknown probability distribution 𝒟𝒟 over instances 

Cc∈



Learning setting 

• learner is given a set D of training instances 〈 x, c(x) 〉
for some target concept c in C
• each instance x is drawn from distribution 𝒟𝒟
• class label c(x) is provided for each x

• learner outputs hypothesis h modeling c



True error of a hypothesis

c h

instance space 𝒳𝒳

+
+

+
-

-

-

the true error of hypothesis h refers to how often h is wrong on future instances 
drawn from 𝒟𝒟



Training error of a hypothesis
the training error of hypothesis h refers to how often h is wrong on instances in 
the training set D

Can we bound error𝒟𝒟(h) in terms of errorD(h) ?
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What’s successful learning? 

To say that our learner L has learned a concept, should we require 
error𝒟𝒟(h) = 0 ?

this is not realistic:
• unless we’ve seen every possible instance, there may be multiple 

hypotheses that are consistent with the training set
• there is some chance our training sample will be unrepresentative



Probably approximately correct learning?

Instead, we’ll require that
• the error of a learned hypothesis h is bounded by some constant ε
• the probability of the learner failing to learn an accurate hypothesis is 

bounded by a constant δ



Probably Approximately Correct (PAC) 
learning [Valiant, CACM 1984]

• Consider a class C of possible target concepts defined over a set of 
instances 𝒳𝒳 of length n, and a learner L using hypothesis space H

• C is PAC learnable by L using H if, for all
c∈ C
distributions 𝒟𝒟 over 𝒳𝒳
ε such that 0 < ε < 0.5
δ such that 0 < δ < 0.5

• learner L will, with probability at least (1-δ), output a hypothesis h ∈ H
such that error𝒟𝒟(h) ≤ ε in time that is polynomial in

1/ε
1/δ
n
size(c)



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 
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