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Goals for the lecture

you should understand the following concepts
e consistent learners and version spaces
« PAC learnability and sample complexity
* VC-dimension
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Probably Approximately Correct (PAC) ()
learning (vaiiant, cacm 1984]

» Consider a class C of possible target concepts defined over a set of
instances X of length n, and a learner L using hypothesis space H

« Cis PAC learnable by L using H if, for all
ce C
distributions D over X
esuchthat0<e <0.5
osuchthat0<¢ <0.5
* learner L will, with probability at least (1-6), output a hypothesis 7 € H
such that errory(h) < e in time that is polynomial in
1/
1/
n
size(c)



PAC learning and consistency

« Suppose we can find hypotheses that are consistent with
m training instances.

* We can analyze PAC learnability by determining whether

1. The needed m grows polynomially in the relevant
parameters

2. the processing time per training example is
polynomial



Version spaces

» A hypothesis # is consistent with a set of training examples D of
target concept if and only if 4(x) = ¢(x) for each training example
(x,c(x)) inD

consistent(h,D) = (V<x,c(x)> e D) h(x)=-c(x)

* The version space V'S, , with respect to hypothesis space H and
training set D, is the subset of hypotheses from H consistent with all
training examples in D

VS, p =1h € H | consistent(h,D)}



Exhausting the version space

* The version space V'S, Is e-exhausted with respect to ¢
and D if every hypothesis /1 € V'S, has true error <e

(‘v’h eVs, D)errorp (h)y<e



Exhausting the version space

« Suppose that every £ in our version space VS, is consistent with m
training examples

« The probability that V'S, , is not e-exhausted (i.e. that it contains some
hypotheses that are not accurate enough)

Proof:

<|H|e™

(1-¢)"
k(1— &)
[H|(1-¢)"

<|H|e™

probability that some hypothesis with error > ¢
is consistent with m training instances

there might be & such hypotheses

k is bounded by |H]

(1-g)<e* when 0 <e<1



Sample complexity for finite hypothesis spaces @

[Blumer et al., Information Processing Letters 1987]

« we want to reduce this probability below &

|H|le ™" <6

» solving for m we get
m> l[ln\H| +ln[l]]
£ o

log dependence on H K ¢ has stronger influence than &



PAC analysis example:
learning conjunctions of Boolean literals

 each instance has n Boolean features
* learned hypotheses are of the form Y = X, A X, A =X

How many training examples suffice to ensure that with prob = 0.99, a
consistent learner will return a hypothesis with error < 0.05 ?

there are 3” hypotheses (each variable can be present and unnegated, present
and negated, or absent) in H

mzﬂis[m(s"ﬁm[ﬂiln

for n=10, m > 312 for n=100, m > 2290



PAC analysis example:
learning conjunctions of Boolean literals

« we've shown that the sample complexity is polynomial in relevant
parameters: 1/e, 1/0, n

» to prove that Boolean conjunctions are PAC learnable, need to also
show that we can find a consistent hypothesis in polynomial time (the
FIND-S algorithm in Mitchell, Chapter 2 does this)

FIND-S:
initialize A to the most specific hypothesis x, A —x, Ax,A—x, ... x A —x,
for each positive training instance x

remove from 4 any literal that is not satisfied by x
output hypothesis #



PAC analysis example:
learning decision trees of depth 2

« each instance has n Boolean features

» learned hypotheses are DTs of depth 2 /\

using only 2 variables
X,

1 0 1 1

|H| = ( jxl6 _n(n 1)><16=8n(n—1)

d \

# possible split choices # possible leaf labelings




PAC analysis example:
learning decision trees of depth 2

 each instance has n Boolean features ¥
» learned hypotheses are DTs of depth 2 /\
X,

using only 2 variables

)(;.

ZANEEVAN

1 0 1 1

How many training examples suffice to ensure that with prob = 0.99, a
consistent learner will return a hypothesis with error < 0.05 ?

m> -Ois[ln(Snz —8n)+ m[%}]

for n=10, m > 224 for =100, m > 318



PAC analysis example:
K-term DNF is not PAC learnable

« each instance has n Boolean features

» learned hypotheses are of the form y — T,vT,v..vT, where
each T, is a conjunction of n Boolean features or their negations

|H| < 3"k | so sample complexity is polynomial in the relevant parameters

m> é[nkln(3)+ ln(%)]

however, the computational complexity (time to find consistent 4) is not
polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be
reduced to learning 3-term DNF)



Comments on PAC learning

» PAC analysis formalizes the learning task and allows for non-perfect
learning (indicated by ¢ and 9)

* Requires polynomial computational time
. filnding a consistent hypothesis is sometimes easier for larger concept
classes

* e.g. although i-term DNF is not PAC learnable, the more general
class &-CNF is

* PAC analysis has been extended to explore a wide range of cases
* the target concept not in our hypothesis class
« infinite hypothesis class (VC-dimension theory)
* noisy training data
* learner allowed to ask queries
* restricted distributions (e.g. uniform) over D
* efc.

* most analyses are worst case
» sample complexity bounds are generally not tight
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What if the target concept is not in our
hypothesis space?

* so far, we've been assuming that the target concept c is in our
hypothesis space; this is not a very reallstlc assumption

 agnostic learning setting
* don't assume c € H

. Idea}(rner returns hypothesis / that makes fewest errors on training
ata



Hoeffding bound

* we can approach the agnostic setting by using the Hoeffding bound

* let Z;...Z,, be a sequence of m independent Bernoulli trials (e.g. coin
flips), each with probability of success E[Z;] = p

cletS=27, + -+ 7,

2

P[S<(p—¢e)m] < e 2me¢



Agnostic PAC learning )

 applying the Hoeffding bound to characterize the error rate of a given
hypothesis

Plerrory(h) > errorp(h) + €] < e=2m’
* but our learner searches hypothesis space to find hy .

P[errorD(hbest) > errorp(hpese) + s] < |H|e—2me’

» solving for the sample complexity when this probability is limited to §

> 1 In|H| + 1 .
m_Zez n n(S
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What if the hypothesis space is not finite”?

* Q: If H is infinite (e.g. the class of perceptrons), what measure of
hypothesis-space complexity can we use in place of |H| ?

« A: the largest subset of X for which H can guarantee zero training
error, regardless of the target function.

this is known as the Vapnik-Chervonenkis dimension (VC-dimension)

o



Shattering and the VC dimension

a set of instances D is shattered by a hypothesis space H iff for
every dichotomy of D there is a hypothesis in H# consistent with
this dichotomy

the VC dimension of H is the size of the largest set of instances
that is shattered by #



Infinite hypothesis space with a finite VC dimension@

consider: H is set of lines in 2D (i.e. perceptrons in 2D feature space)

can find an / consistent with 1 instance ~ ¢an find an 4 consistent with 2
no matter how it's labeled instances no matter labeling
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Infinite hypothesis space with a finite VC dimension@

consider: H is set of lines in 2D

can find an / consistent with 3 cannot find an /4 consistent with 4

instances no matter labeling (assuming instances for some labelings
they’re not colinear)

A . A

~
/ ~“~~
4 Sso
/ ~o
4 Sso
,l S~
, @
[

»

v

can shatter 3 instances, but not 4, so the VC-dim(H) = 3
more generally, the VC-dim of hyperplanes in » dimensions = n+1



VC dimension for finite hypothesis spaces @

for finite H, VC-dim(H) < log,|H|

Proof:
suppose VC-dim(H) =d
for d instances, 24 different labelings possible
therefore H must be able to represent 2¢ hypotheses
2¢ < |H|
d =VC-dim(H) < log,|H|



Sample complexity and the VC dimension@

« using VC-dim(H) as a measure of complexity of H, we can derive the
following bound [Blumer et al., JACM 1989]

m > 1(4 log, (2) +8VC-dim(H )log, [ED
g o &

m grows log x linear in ¢ (better than earlier bound)

can be used for both finite and infinite hypothesis spaces



Lower bound on sample complexity @

[Ehrenfeucht et al., Information & Computation 1989]

* there exists a distribution D and target concept in C such that if the
number of training instances given to L

] [IJ,VC-dim(C)—l}

m <max| —log
& 32¢

then with probability at least ¢, L outputs /# such that errory(h) > ¢



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
from materials developed by Mark Craven, David Rage, Jude
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
and Pedro Domingos.
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