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Goals for the lecture

you should understand the following concepts
• consistent learners and version spaces
• PAC learnability and sample complexity
• VC-dimension



PAC Learning Theory



Probably Approximately Correct (PAC) 
learning [Valiant, CACM 1984]

• Consider a class C of possible target concepts defined over a set of 
instances 𝒳𝒳 of length n, and a learner L using hypothesis space H

• C is PAC learnable by L using H if, for all
c∈ C
distributions 𝒟𝒟 over 𝒳𝒳
ε such that 0 < ε < 0.5
δ such that 0 < δ < 0.5

• learner L will, with probability at least (1-δ), output a hypothesis h ∈ H
such that error𝒟𝒟(h) ≤ ε in time that is polynomial in

1/ε
1/δ
n
size(c)



PAC learning and consistency

• Suppose we can find hypotheses that are consistent with 
m training instances.  

• We can analyze PAC learnability by determining whether
1. The needed m grows polynomially in the relevant 

parameters
2. the processing time per training example is 

polynomial



Version spaces

• A hypothesis h is consistent with a set of training examples D of 
target concept if and only if h(x) = c(x) for each training example  
〈 x, c(x) 〉 in D

• The version space VSH,D with respect to hypothesis space H and 
training set D, is the subset of hypotheses from H consistent with all 
training examples in D
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Exhausting the version space

• The version space VSH,D is ε-exhausted with respect to c
and D if every hypothesis h ∈ VSH,D has true error < ε



Exhausting the version space
• Suppose that every h in our version space VSH,D is consistent with m

training examples
• The probability that VSH,D is not ε-exhausted (i.e. that it contains some 

hypotheses that are not accurate enough)

there might be k such hypotheses

k is bounded by |H|

probability that some hypothesis with error > ε
is consistent with m training instances

Proof:



Sample complexity for finite hypothesis spaces
[Blumer et al., Information Processing Letters 1987]

• we want to reduce this probability below δ

• solving for m we get

log dependence on H ε has stronger influence than δ



PAC analysis example: 
learning conjunctions of Boolean literals

• each instance has n Boolean features
• learned hypotheses are of the form

How many training examples suffice to ensure that with prob ≥ 0.99, a 
consistent learner will return a hypothesis with error ≤ 0.05 ?

there are 3n hypotheses (each variable can be present and unnegated, present 
and negated, or absent) in H

for n=10, m ≥ 312               for n=100, m ≥ 2290
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• we’ve shown that the sample complexity is polynomial in relevant 
parameters: 1/ε,  1/δ, n

• to prove that Boolean conjunctions are PAC learnable, need to also 
show that we can find a consistent hypothesis in polynomial time (the 
FIND-S algorithm in Mitchell, Chapter 2 does this)

FIND-S:
initialize h to the most specific hypothesis   x1 ∧ ¬x1 ∧ x2∧¬x2 … xn∧ ¬xn
for each positive training instance x

remove from h any literal that is not satisfied by x
output hypothesis h

PAC analysis example: 
learning conjunctions of Boolean literals



PAC analysis example: 
learning decision trees of depth 2

• each instance has n Boolean features
• learned hypotheses are DTs of depth 2 

using only 2 variables

Xi
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• each instance has n Boolean features
• learned hypotheses are DTs of depth 2 

using only 2 variables

How many training examples suffice to ensure that with prob ≥ 0.99, a 
consistent learner will return a hypothesis with error ≤ 0.05 ?

for n=10, m ≥ 224               for n=100, m ≥ 318

Xi

Xj Xj

1 0 1 1

PAC analysis example: 
learning decision trees of depth 2



PAC analysis example: 
K-term DNF is not PAC learnable

• each instance has n Boolean features
• learned hypotheses are of the form                                  where 

each Ti is a conjunction of n Boolean features or their negations

|H| ≤ 3nk , so sample complexity is polynomial in the relevant parameters

however, the computational complexity (time to find consistent h) is not 
polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be 
reduced to learning 3-term DNF)
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Comments on PAC learning
• PAC analysis formalizes the learning task and allows for non-perfect 

learning (indicated by ε and δ)
• Requires polynomial computational time

• finding a consistent hypothesis is sometimes easier for larger concept 
classes

• e.g. although k-term DNF is not PAC learnable, the more general 
class k-CNF is

• PAC analysis has been extended to explore a wide range of cases
• the target concept not in our hypothesis class
• infinite hypothesis class (VC-dimension theory)
• noisy training data
• learner allowed to ask queries
• restricted distributions (e.g. uniform) over 𝒟𝒟
• etc.

• most analyses are worst case
• sample complexity bounds are generally not tight



The Agnostic Case



What if the target concept is not in our 
hypothesis space?

• so far, we’ve been assuming that the target concept c is in our 
hypothesis space; this is not a very realistic assumption

• agnostic learning setting
• don’t assume c ∈ H
• learner returns hypothesis h that makes fewest errors on training 

data



Hoeffding bound

• we can approach the agnostic setting by using the Hoeffding bound
• let 𝑍𝑍1…𝑍𝑍𝑚𝑚 be a sequence of 𝑚𝑚 independent Bernoulli trials (e.g. coin 

flips), each with probability of success 𝐸𝐸 𝑍𝑍𝑖𝑖 = 𝑝𝑝
• let 𝑆𝑆 = 𝑍𝑍1 + ⋯+ 𝑍𝑍𝑚𝑚

𝑃𝑃 𝑆𝑆 < 𝑝𝑝 − 𝜀𝜀 𝑚𝑚 ≤ 𝑒𝑒−2𝑚𝑚𝜀𝜀2



Agnostic PAC learning

• applying the Hoeffding bound to characterize the error rate of a given 
hypothesis

𝑃𝑃 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝒟𝒟 ℎ > 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒D ℎ + 𝜀𝜀 ≤ 𝑒𝑒−2𝑚𝑚𝜀𝜀2

• but our learner searches hypothesis space to find ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑃𝑃 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝒟𝒟 ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 > 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒D ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝜀𝜀 ≤ 𝐻𝐻 𝑒𝑒−2𝑚𝑚𝜀𝜀2

• solving for the sample complexity when this probability is limited to 𝛿𝛿

𝑚𝑚 ≥
1

2𝜀𝜀2
𝑙𝑙𝑙𝑙 𝐻𝐻 + 𝑙𝑙𝑙𝑙

1
𝛿𝛿



VC-dimension



What if the hypothesis space is not finite?

• Q: If H is infinite (e.g. the class of perceptrons), what measure of 
hypothesis-space complexity can we use in place of |H| ?

• A: the largest subset of 𝒳𝒳 for which H can guarantee zero training 
error, regardless of the target function.

this is known as the Vapnik-Chervonenkis dimension (VC-dimension)



• a set of instances D is shattered by a hypothesis space H iff for 
every dichotomy of D there is a hypothesis in H consistent with 
this dichotomy

• the VC dimension of H is the size of the largest set of instances 
that is shattered by H

Shattering and the VC dimension



Infinite hypothesis space with a finite VC dimension

consider: H is set of lines in 2D (i.e. perceptrons in 2D feature space)

1

can find an h consistent with 1 instance 
no matter how it’s labeled

1

can find an h consistent with 2 
instances no matter labeling

2



consider: H is set of lines in 2D

1

can find an h consistent with 3 
instances no matter labeling (assuming 
they’re not colinear)

2

3

+

cannot find an h consistent with 4 
instances for some labelings

-

-
+

can shatter 3 instances, but not 4, so the VC-dim(H) = 3
more generally, the VC-dim of hyperplanes in n dimensions = n+1

Infinite hypothesis space with a finite VC dimension



VC dimension for finite hypothesis spaces

for finite H, VC-dim(H) ≤ log2|H|

Proof:
suppose VC-dim(H) = d
for d instances, 2d different labelings possible
therefore H must be able to represent 2d hypotheses
2d ≤ |H|
d = VC-dim(H) ≤ log2|H|



Sample complexity and the VC dimension

• using VC-dim(H) as a measure of complexity of H, we can derive the 
following bound [Blumer et al., JACM 1989]

can be used for both finite and infinite hypothesis spaces

m grows log × linear in ε (better than earlier bound)



Lower bound on sample complexity
[Ehrenfeucht et al., Information & Computation 1989]

• there exists a distribution 𝒟𝒟 and target concept in C such that if the 
number of training instances given to L

then with probability at least δ, L outputs h such that errorD(h) > ε



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 
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