Introduction to Learning Theory Part 2

CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts

- consistent learners and version spaces
- PAC learnability and sample complexity
- VC-dimension

PAC Learning Theory

Probably Approximately Correct (PAC) (learning [Valiant, CACM 1984]

- Consider a class *C* of possible target concepts defined over a set of instances \mathcal{X} of length *n*, and a learner *L* using hypothesis space *H*
- *C* is PAC learnable by *L* using *H* if, for all

 $c \in C$ distributions \mathcal{D} over \mathcal{X} ε such that $0 < \varepsilon < 0.5$ δ such that $0 < \delta < 0.5$

• learner *L* will, with probability at least $(1-\delta)$, output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \varepsilon$ in time that is polynomial in

 $\frac{1/\varepsilon}{1/\delta}$ n size(c)

PAC learning and consistency

- Suppose we can find hypotheses that are consistent with *m* training instances.
- We can analyze PAC learnability by determining whether
 - 1. The needed *m* grows polynomially in the relevant parameters
 - 2. the processing time per training example is polynomial

Version spaces

 A hypothesis h is consistent with a set of training examples D of target concept if and only if h(x) = c(x) for each training example (x, c(x)) in D

$$consistent(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$$

• The version space *VS*_{*H*,*D*} with respect to hypothesis space *H* and training set D, is the subset of hypotheses from *H* consistent with all training examples in D

$$VS_{H,D} \equiv \{h \in H \mid consistent(h, D)\}$$

Exhausting the version space

• The version space $VS_{H,D}$ is ε -exhausted with respect to cand D if every hypothesis $h \in VS_{H,D}$ has true error $< \varepsilon$

 $(\forall h \in VS_{H, D}) error_{\mathcal{D}}(h) < \varepsilon$

Exhausting the version space

- Suppose that every *h* in our version space *VS*_{*H*,D} is consistent with *m* training examples
- The probability that $VS_{H,D}$ is <u>not</u> ε -exhausted (i.e. that it contains some hypotheses that are not accurate enough)

$$\leq |H| e^{-\varepsilon m}$$

Proof: $(1 - \mathcal{E})^m$ probability that some hypothesis with error > ε is consistent with *m* training instances

 $k(1-\varepsilon)^m$ there might be k such hypotheses

 $|H|(1-\varepsilon)^m$ k is bounded by |H|

 $\leq |H| e^{-\varepsilon m}$ $(1-\varepsilon) \leq e^{-\varepsilon}$ when $0 \leq \varepsilon \leq 1$

Sample complexity for finite hypothesis spaces [Blumer et al., *Information Processing Letters* 1987]

- we want to reduce this probability below δ

$$|H|e^{-\varepsilon m} \leq \delta$$

• solving for *m* we get

$$m \ge \frac{1}{\varepsilon} \left(\ln|H| + \ln\left(\frac{1}{\delta}\right) \right)$$

log dependence on H ε has stronger influence than δ

PAC analysis example: learning conjunctions of Boolean literals

- each instance has *n* Boolean features
- learned hypotheses are of the form $Y = X_1 \wedge X_2 \wedge \neg X_5$

How many training examples suffice to ensure that with prob \ge 0.99, a consistent learner will return a hypothesis with error \le 0.05 ?

there are 3^n hypotheses (each variable can be present and unnegated, present and negated, or absent) in *H*

$$m \ge \frac{1}{.05} \left(\ln \left(3^n \right) + \ln \left(\frac{1}{.01} \right) \right)$$

for n=10, $m \ge 312$ for n=100, $m \ge 2290$

PAC analysis example: learning conjunctions of Boolean literals

- we've shown that the sample complexity is polynomial in relevant parameters: $1/\epsilon$, $1/\delta$, *n*
- to prove that Boolean conjunctions are PAC learnable, need to also show that we can find a consistent hypothesis in polynomial time (the FIND-S algorithm in Mitchell, Chapter 2 does this)

FIND-S:

initialize *h* to the most specific hypothesis $x_1 \wedge \neg x_1 \wedge x_2 \wedge \neg x_2 \dots x_n \wedge \neg x_n$ for each positive training instance *x* remove from *h* any literal that is not satisfied by *x* output hypothesis *h*

PAC analysis example: learning decision trees of depth 2

- each instance has *n* Boolean features
- learned hypotheses are DTs of depth 2 using only 2 variables

PAC analysis example: learning decision trees of depth 2

- each instance has *n* Boolean features
- learned hypotheses are DTs of depth 2 using only 2 variables

How many training examples suffice to ensure that with prob \geq 0.99, a consistent learner will return a hypothesis with error \leq 0.05 ?

$$m \ge \frac{1}{.05} \left(\ln \left(8n^2 - 8n \right) + \ln \left(\frac{1}{.01} \right) \right)$$

for n=10, $m \ge 224$ for n=100, $m \ge 318$

PAC analysis example: *K*-term DNF is not PAC learnable

- each instance has *n* Boolean features
- learned hypotheses are of the form $Y = T_1 \lor T_2 \lor \ldots \lor T_k$ where each T_i is a conjunction of *n* Boolean features or their negations

 $|H| \leq 3^{nk}$, so sample complexity is polynomial in the relevant parameters

$$m \ge \frac{1}{\varepsilon} \left(nk \ln(3) + \ln\left(\frac{1}{\delta}\right) \right)$$

however, the computational complexity (time to find consistent h) is not polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be reduced to learning 3-term DNF)

Comments on PAC learning

- PAC analysis formalizes the learning task and allows for non-perfect learning (indicated by ε and δ)
 - Requires polynomial computational time
- finding a consistent hypothesis is sometimes easier for larger concept classes
 - e.g. although *k*-term DNF is not PAC learnable, the more general class *k*-CNF is
- PAC analysis has been extended to explore a wide range of cases
 - the target concept not in our hypothesis class
 - infinite hypothesis class (VC-dimension theory)
 - noisy training data
 - learner allowed to ask queries
 - restricted distributions (e.g. uniform) over ${\cal D}$
 - etc.
- most analyses are worst case
- sample complexity bounds are generally not tight

The Agnostic Case

What if the target concept is not in our hypothesis space?

- so far, we've been assuming that the target concept *c* is in our hypothesis space; this is not a very realistic assumption
- agnostic learning setting
 - don't assume $c \in H$
 - learner returns hypothesis h that makes fewest errors on training data

Hoeffding bound

- we can approach the agnostic setting by using the Hoeffding bound
- let $Z_1...Z_m$ be a sequence of *m* independent Bernoulli trials (e.g. coin flips), each with probability of success $E[Z_i] = p$
- let $S = Z_1 + \dots + Z_m$

$$P[S < (p - \varepsilon)m] \le e^{-2m\varepsilon^2}$$

Agnostic PAC learning

 applying the Hoeffding bound to characterize the error rate of a given hypothesis

$$P[error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h) + \varepsilon] \le e^{-2m\varepsilon^2}$$

• but our learner searches hypothesis space to find h_{best}

$$P[error_{\mathcal{D}}(h_{best}) > error_{\mathcal{D}}(h_{best}) + \varepsilon] \le |H|e^{-2m\varepsilon^2}$$

- solving for the sample complexity when this probability is limited to δ

$$m \ge \frac{1}{2\varepsilon^2} \left(ln|H| + ln\left(\frac{1}{\delta}\right) \right)$$

VC-dimension

What if the hypothesis space is not finite?

• **Q:** If *H* is infinite (e.g. the class of perceptrons), what measure of hypothesis-space complexity can we use in place of |*H*| ?

• A: the largest subset of \mathcal{X} for which H can guarantee zero training error, regardless of the target function.

this is known as the Vapnik-Chervonenkis dimension (VC-dimension)

Shattering and the VC dimension

• a set of instances D is *shattered* by a hypothesis space *H* iff for every dichotomy of D there is a hypothesis in *H* consistent with this dichotomy

• the VC dimension of *H* is the size of the largest set of instances that is shattered by *H*

consider: *H* is set of lines in 2D (i.e. perceptrons in 2D feature space)

can find an h consistent with 1 instance no matter how it's labeled

can find an *h* consistent with 2 instances no matter labeling

consider: *H* is set of lines in 2D

can find an *h* consistent with 3 instances no matter labeling (assuming they're not colinear)

 $\underline{\text{cannot}}$ find an *h* consistent with 4 instances for some labelings

for finite *H*, VC-dim(*H*) $\leq \log_2 |H|$

Proof:

suppose VC-dim(H) = d

for *d* instances, 2^d different labelings possible therefore *H* must be able to represent 2^d hypotheses $2^d \le |H|$ $d = \text{VC-dim}(H) \le \log_2|H|$

Sample complexity and the VC dimension

• using VC-dim(*H*) as a measure of complexity of *H*, we can derive the following bound [Blumer et al., *JACM* 1989]

$$m \ge \frac{1}{\varepsilon} \left(4 \log_2 \left(\frac{2}{\delta} \right) + 8 \text{VC-dim}(H) \log_2 \left(\frac{13}{\varepsilon} \right) \right)$$

m grows log \times linear in ε (better than earlier bound)

can be used for both finite and infinite hypothesis spaces

Lower bound on sample complexity [Ehrenfeucht et al., Information & Computation 1989]

• there exists a distribution \mathcal{D} and target concept in C such that if the number of training instances given to L

$$m < \max\left[\frac{1}{\varepsilon}\log\left(\frac{1}{\delta}\right), \frac{\text{VC-dim}(C) - 1}{32\varepsilon}\right]$$

then with probability at least δ , *L* outputs *h* such that $error_{D}(h) > \varepsilon$

THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.