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Goals for the lecture

you should understand the following concepts
• the margin
• the linear support vector machine
• the primal and dual formulations of SVM learning
• support vectors

• Optional: variants of SVM
• Optional: Lagrange Multiplier
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Motivation



Linear classification

(𝑤𝑤∗)𝑇𝑇𝑥𝑥 = 0

Class +1

Class -1

𝑤𝑤∗

(𝑤𝑤∗)𝑇𝑇𝑥𝑥 > 0

(𝑤𝑤∗)𝑇𝑇𝑥𝑥 < 0

Assume perfect separation between the two 
classes



Attempt

• Given training data 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 : 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 i.i.d. from distribution 𝐷𝐷
• Hypothesis 𝑦𝑦 = sign(𝑓𝑓𝑤𝑤 𝑥𝑥 ) = sign(𝑤𝑤𝑇𝑇𝑥𝑥)

• 𝑦𝑦 = +1 if 𝑤𝑤𝑇𝑇𝑥𝑥 > 0
• 𝑦𝑦 = −1 if 𝑤𝑤𝑇𝑇𝑥𝑥 < 0

• Let’s assume that we can optimize to find 𝑤𝑤



Multiple optimal solutions?

Class +1

Class -1

𝑤𝑤2 𝑤𝑤3𝑤𝑤1

Same on empirical loss;
Different on test/expected loss



What about 𝑤𝑤1?

Class +1

Class -1

𝑤𝑤1

New test data



What about 𝑤𝑤3?

Class +1

Class -1

𝑤𝑤3

New test data



Most confident: 𝑤𝑤2

Class +1

Class -1

𝑤𝑤2

New test data



Intuition: margin

Class +1

Class -1

𝑤𝑤2

large margin



Margin



Margin

We are going to prove the following math expression for margin 
using a geometric argument

• Lemma 1: 𝑥𝑥 has distance |𝑓𝑓𝑤𝑤 𝑥𝑥 |
| 𝑤𝑤 |

to the hyperplane 𝑓𝑓𝑤𝑤 𝑥𝑥 =
𝑤𝑤𝑇𝑇𝑥𝑥 = 0

• Lemma 2: 𝑥𝑥 has distance |𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥 |
| 𝑤𝑤 |

to the hyperplane 𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥 =
𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

Need two geometric facts:
• 𝑤𝑤 is orthogonal to the hyperplane 𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0
• Let 𝑣𝑣 be a direction (i.e., unit vector). Then the length of the 

projection of 𝑥𝑥 on 𝑣𝑣 is 𝑣𝑣𝑇𝑇𝑥𝑥



Margin

• Lemma 1: 𝑥𝑥 has distance |𝑓𝑓𝑤𝑤 𝑥𝑥 |
| 𝑤𝑤 |

to the hyperplane 𝑓𝑓𝑤𝑤 𝑥𝑥 =
𝑤𝑤𝑇𝑇𝑥𝑥 = 0

Proof:
• 𝑤𝑤 is orthogonal to the hyperplane
• The unit direction is 𝑤𝑤

| 𝑤𝑤 |

• The projection of 𝑥𝑥 is 𝑤𝑤
𝑤𝑤

𝑇𝑇
𝑥𝑥 = 𝑓𝑓𝑤𝑤(𝑥𝑥)

| 𝑤𝑤 |

𝑤𝑤
| 𝑤𝑤 |

𝑥𝑥

𝑤𝑤
𝑤𝑤

𝑇𝑇

𝑥𝑥

0



Margin: with bias

• Claim 1: 𝑤𝑤 is orthogonal to the hyperplane 𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 =
0

Proof:
• pick any 𝑥𝑥1 and 𝑥𝑥2 on the hyperplane
• 𝑤𝑤𝑇𝑇𝑥𝑥1 + 𝑏𝑏 = 0
• 𝑤𝑤𝑇𝑇𝑥𝑥2 + 𝑏𝑏 = 0

• So 𝑤𝑤𝑇𝑇(𝑥𝑥1 − 𝑥𝑥2) = 0



Margin: with bias

• Claim 2: 0 has distance |𝑏𝑏|
| 𝑤𝑤 |

to the hyperplane 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

Proof:
• pick any 𝑥𝑥1 the hyperplane
• Project 𝑥𝑥1 to the unit direction 𝑤𝑤

| 𝑤𝑤 |
to get the distance

• 𝑤𝑤
𝑤𝑤

𝑇𝑇
𝑥𝑥1 = −𝑏𝑏

| 𝑤𝑤 |
since 𝑤𝑤𝑇𝑇𝑥𝑥1 + 𝑏𝑏 = 0



Margin: with bias

• Lemma 2: 𝑥𝑥 has distance |𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥 |
| 𝑤𝑤 |

to the hyperplane 𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥 =
𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

Proof:
• Let 𝑥𝑥 = 𝑥𝑥⊥ + 𝑟𝑟 𝑤𝑤

| 𝑤𝑤 |
, then |𝑟𝑟| is the distance

• Multiply both sides by 𝑤𝑤𝑇𝑇 and add 𝑏𝑏
• Left hand side: 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥

• Right hand side: 𝑤𝑤𝑇𝑇𝑥𝑥⊥ + 𝑟𝑟 𝑤𝑤
𝑇𝑇𝑤𝑤

| 𝑤𝑤 |
+ 𝑏𝑏 = 0 + 𝑟𝑟| 𝑤𝑤 |



Support Vector Machine 
(SVM)



SVM: objective

• Absolute margin over all training data points:

𝛾𝛾 = min
𝑖𝑖

|𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥𝑖𝑖 |
| 𝑤𝑤 |

• Since only want correct 𝑓𝑓𝑤𝑤,𝑏𝑏, and recall 𝑦𝑦𝑖𝑖 ∈ {+1,−1}, we define 
the margin to be

𝛾𝛾 = min
𝑖𝑖

𝑦𝑦𝑖𝑖𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥𝑖𝑖
| 𝑤𝑤 |

• If 𝑓𝑓𝑤𝑤,𝑏𝑏 incorrect on some 𝑥𝑥𝑖𝑖, the margin is negative



SVM: objective

• Maximize margin over all training data points:

max
𝑤𝑤,𝑏𝑏

𝛾𝛾 = max
𝑤𝑤,𝑏𝑏

min
𝑖𝑖

𝑦𝑦𝑖𝑖𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥𝑖𝑖
| 𝑤𝑤 |

= max
𝑤𝑤,𝑏𝑏

min
𝑖𝑖

𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏)
| 𝑤𝑤 |

• A bit complicated …



SVM: simplified objective

• Observation: when (𝑤𝑤, 𝑏𝑏) scaled by a factor 𝑐𝑐, the margin 
unchanged

𝑦𝑦𝑖𝑖(𝑐𝑐𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑐𝑐𝑏𝑏)
| 𝑐𝑐𝑤𝑤 |

=
𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏)

| 𝑤𝑤 |

• Let’s consider a fixed scale such that

𝑦𝑦𝑖𝑖∗ 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖∗ + 𝑏𝑏 = 1
where 𝑥𝑥𝑖𝑖∗ is the point closest to the hyperplane



SVM: simplified objective

• Let’s consider a fixed scale such that

𝑦𝑦𝑖𝑖∗ 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖∗ + 𝑏𝑏 = 1
where 𝑥𝑥𝑖𝑖∗ is the point closet to the hyperplane

• Now we have for all data
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 ≥ 1

and at least for one 𝑖𝑖 the equality holds
• Then the margin over all training points is 1

| 𝑤𝑤 |



SVM: simplified objective

• Optimization simplified to

min
𝑤𝑤,𝑏𝑏

1
2

𝑤𝑤
2

𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 ≥ 1,∀𝑖𝑖

• How to find the optimum �𝑤𝑤∗?
• Solved by Lagrange multiplier method



SVM: optimization



SVM: optimization

• Optimization (Quadratic Programming):

min
𝑤𝑤,𝑏𝑏

1
2

𝑤𝑤
2

𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 ≥ 1,∀𝑖𝑖

• Generalized Lagrangian:

ℒ 𝑤𝑤, 𝑏𝑏,𝜶𝜶 =
1
2

𝑤𝑤
2
−�

𝑖𝑖

𝛼𝛼𝑖𝑖[𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 − 1]

where 𝜶𝜶 is the Lagrange multiplier



SVM: optimization

• KKT conditions:
𝜕𝜕ℒ
𝜕𝜕𝑤𝑤

= 0, 𝑤𝑤 = ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 (1)
𝜕𝜕ℒ
𝜕𝜕𝑏𝑏

= 0, 0 = ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 (2)

• Plug into ℒ:
ℒ 𝑤𝑤, 𝑏𝑏,𝜶𝜶 = ∑𝑖𝑖 𝛼𝛼𝑖𝑖 −

1
2
∑𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑖𝑖 (3)

combined with 0 = ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 ,𝛼𝛼𝑖𝑖 ≥ 0



SVM: optimization

• Reduces to dual problem:
ℒ 𝑤𝑤, 𝑏𝑏,𝜶𝜶 = �

𝑖𝑖

𝛼𝛼𝑖𝑖 −
1
2
�
𝑖𝑖𝑖𝑖

𝛼𝛼𝑖𝑖𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑖𝑖

�
𝑖𝑖

𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0,𝛼𝛼𝑖𝑖 ≥ 0

• Since 𝑤𝑤 = ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖, we have 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥 + 𝑏𝑏

Only depend on inner 
products



Support Vectors

• those instances with αi > 0
are called support vectors 
• they lie on the margin 

boundary
• solution NOT changed if 

delete the instances with αi = 
0 support 

vectors

• final solution is a sparse linear combination of the training 
instances



Optional: Lagrange 
Multiplier



Lagrangian

• Consider optimization problem:
min
𝑤𝑤

𝑓𝑓(𝑤𝑤)

ℎ𝑖𝑖 𝑤𝑤 = 0,∀1 ≤ 𝑖𝑖 ≤ 𝑙𝑙

• Lagrangian:
ℒ 𝑤𝑤,𝜷𝜷 = 𝑓𝑓 𝑤𝑤 + �

𝑖𝑖

𝛽𝛽𝑖𝑖ℎ𝑖𝑖(𝑤𝑤)

where 𝛽𝛽𝑖𝑖 ’s are called Lagrange multipliers



Lagrangian

• Consider optimization problem:
min
𝑤𝑤

𝑓𝑓(𝑤𝑤)

ℎ𝑖𝑖 𝑤𝑤 = 0,∀1 ≤ 𝑖𝑖 ≤ 𝑙𝑙

• Solved by setting derivatives of Lagrangian to 0
𝜕𝜕ℒ
𝜕𝜕𝑤𝑤𝑖𝑖

= 0;
𝜕𝜕ℒ
𝜕𝜕𝛽𝛽𝑖𝑖

= 0



Generalized Lagrangian

• Consider optimization problem:
min
𝑤𝑤

𝑓𝑓(𝑤𝑤)

𝑔𝑔𝑖𝑖 𝑤𝑤 ≤ 0,∀1 ≤ 𝑖𝑖 ≤ 𝑘𝑘

ℎ𝑖𝑖 𝑤𝑤 = 0,∀1 ≤ 𝑗𝑗 ≤ 𝑙𝑙
• Generalized Lagrangian:

ℒ 𝑤𝑤,𝜶𝜶,𝜷𝜷 = 𝑓𝑓 𝑤𝑤 + �
𝑖𝑖

𝛼𝛼𝑖𝑖𝑔𝑔𝑖𝑖(𝑤𝑤) + �
𝑖𝑖

𝛽𝛽𝑖𝑖ℎ𝑖𝑖(𝑤𝑤)

where 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖 ’s are called Lagrange multipliers



Generalized Lagrangian

• Consider the quantity:

𝜃𝜃𝑃𝑃 𝑤𝑤 ≔ max
𝜶𝜶,𝜷𝜷:𝛼𝛼𝑖𝑖≥0

ℒ 𝑤𝑤,𝜶𝜶,𝜷𝜷

• Why?

𝜃𝜃𝑃𝑃 𝑤𝑤 = �𝑓𝑓 𝑤𝑤 , if 𝑤𝑤 satisfies all the constraints
+∞, if 𝑤𝑤 does not satisfy the constraints

• So minimizing 𝑓𝑓 𝑤𝑤 is the same as minimizing 𝜃𝜃𝑃𝑃 𝑤𝑤
min
𝑤𝑤

𝑓𝑓 𝑤𝑤 = min
𝑤𝑤

𝜃𝜃𝑃𝑃 𝑤𝑤 = min
𝑤𝑤

max
𝜶𝜶,𝜷𝜷:𝛼𝛼𝑖𝑖≥0

ℒ 𝑤𝑤,𝜶𝜶,𝜷𝜷



Lagrange duality

• The primal problem
𝑝𝑝∗ ≔ min

𝑤𝑤
𝑓𝑓 𝑤𝑤 = min

𝑤𝑤
max

𝜶𝜶,𝜷𝜷:𝛼𝛼𝑖𝑖≥0
ℒ 𝑤𝑤,𝜶𝜶,𝜷𝜷

• The dual problem
𝑑𝑑∗ ≔ max

𝜶𝜶,𝜷𝜷:𝛼𝛼𝑖𝑖≥0
min
𝑤𝑤

ℒ 𝑤𝑤,𝜶𝜶,𝜷𝜷

• Always true:
𝑑𝑑∗ ≤ 𝑝𝑝∗



Lagrange duality

• The primal problem
𝑝𝑝∗ ≔ min

𝑤𝑤
𝑓𝑓 𝑤𝑤 = min

𝑤𝑤
max

𝜶𝜶,𝜷𝜷:𝛼𝛼𝑖𝑖≥0
ℒ 𝑤𝑤,𝜶𝜶,𝜷𝜷

• The dual problem
𝑑𝑑∗ ≔ max

𝜶𝜶,𝜷𝜷:𝛼𝛼𝑖𝑖≥0
min
𝑤𝑤

ℒ 𝑤𝑤,𝜶𝜶,𝜷𝜷

• Interesting case: when do we have 
𝑑𝑑∗ = 𝑝𝑝∗?



Lagrange duality

• Theorem: under proper conditions, there exists 𝑤𝑤∗,𝜶𝜶∗,𝜷𝜷∗
such that

𝑑𝑑∗ = ℒ 𝑤𝑤∗,𝜶𝜶∗,𝜷𝜷∗ = 𝑝𝑝∗

Moreover, 𝑤𝑤∗,𝜶𝜶∗,𝜷𝜷∗ satisfy Karush-Kuhn-Tucker (KKT) 
conditions:

𝜕𝜕ℒ
𝜕𝜕𝑤𝑤𝑖𝑖

= 0, 𝛼𝛼𝑖𝑖𝑔𝑔𝑖𝑖 𝑤𝑤 = 0

𝑔𝑔𝑖𝑖 𝑤𝑤 ≤ 0, ℎ𝑖𝑖 𝑤𝑤 = 0, 𝛼𝛼𝑖𝑖 ≥ 0



Lagrange duality

• Theorem: under proper conditions, there exists 𝑤𝑤∗,𝜶𝜶∗,𝜷𝜷∗
such that

𝑑𝑑∗ = ℒ 𝑤𝑤∗,𝜶𝜶∗,𝜷𝜷∗ = 𝑝𝑝∗

Moreover, 𝑤𝑤∗,𝜶𝜶∗,𝜷𝜷∗ satisfy Karush-Kuhn-Tucker (KKT) 
conditions:

𝜕𝜕ℒ
𝜕𝜕𝑤𝑤𝑖𝑖

= 0, 𝛼𝛼𝑖𝑖𝑔𝑔𝑖𝑖 𝑤𝑤 = 0

𝑔𝑔𝑖𝑖 𝑤𝑤 ≤ 0, ℎ𝑖𝑖 𝑤𝑤 = 0, 𝛼𝛼𝑖𝑖 ≥ 0

dual 
complementarity



Lagrange duality

• Theorem: under proper conditions, there exists 𝑤𝑤∗,𝜶𝜶∗,𝜷𝜷∗
such that

𝑑𝑑∗ = ℒ 𝑤𝑤∗,𝜶𝜶∗,𝜷𝜷∗ = 𝑝𝑝∗

• Moreover, 𝑤𝑤∗,𝜶𝜶∗,𝜷𝜷∗ satisfy Karush-Kuhn-Tucker (KKT) 
conditions:

𝜕𝜕ℒ
𝜕𝜕𝑤𝑤𝑖𝑖

= 0, 𝛼𝛼𝑖𝑖𝑔𝑔𝑖𝑖 𝑤𝑤 = 0

𝑔𝑔𝑖𝑖 𝑤𝑤 ≤ 0, ℎ𝑖𝑖 𝑤𝑤 = 0, 𝛼𝛼𝑖𝑖 ≥ 0

dual constraintsprimal constraints



Lagrange duality

• What are the proper conditions? 
• A set of conditions (Slater conditions):

• 𝑓𝑓,𝑔𝑔𝑖𝑖 convex, ℎ𝑖𝑖 affine, and exists 𝑤𝑤 satisfying all 𝑔𝑔𝑖𝑖 𝑤𝑤 < 0

• There exist other sets of conditions
• Check textbooks, e.g.,  Convex Optimization by Boyd and 

Vandenberghe



Optional: Variants of SVM



Hard-margin SVM

• Optimization (Quadratic Programming):

min
𝑤𝑤,𝑏𝑏

1
2

𝑤𝑤
2

𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 ≥ 1,∀𝑖𝑖



Soft-margin SVM [Cortes & Vapnik, Machine Learning 1995]

• if the training instances are not linearly separable, the previous 
formulation will fail

• we can adjust our approach by using slack variables (denoted 
by 𝜁𝜁𝑖𝑖) to tolerate errors

min
𝑤𝑤,𝑏𝑏,𝜁𝜁𝑖𝑖

1
2

𝑤𝑤
2

+ 𝐶𝐶�
𝑖𝑖

𝜁𝜁𝑖𝑖

𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜁𝜁𝑖𝑖 , 𝜁𝜁𝑖𝑖 ≥ 0,∀𝑖𝑖
• 𝐶𝐶 determines the relative importance of maximizing margin vs. 

minimizing slack



The effect of 𝐶𝐶 in soft-margin SVM

Figure from Ben-Hur & Weston, 
Methods in Molecular Biology 2010



Hinge loss

• when we covered neural nets, we talked about minimizing 
squared loss and cross-entropy loss

• SVMs minimize hinge loss

loss (error) 
when  𝑦𝑦 = 1

model output ℎ 𝒙𝒙

squared loss

0/1 loss

hinge loss



Support Vector Regression 

• the SVM idea can also be 
applied in regression tasks

• an 𝜖𝜖-insensitive error 
function specifies that a 
training instance is well 
explained if the model’s 
prediction is within 𝜖𝜖 of 𝑦𝑦𝑖𝑖

(𝑤𝑤⊤𝑥𝑥 + 𝑏𝑏) − 𝑦𝑦 = 𝜖𝜖

𝑦𝑦 − (𝑤𝑤⊤𝑥𝑥 + 𝑏𝑏) = 𝜖𝜖



Support Vector Regression

• Regression using slack variables (denoted by 𝜁𝜁𝑖𝑖 , 𝜉𝜉𝑖𝑖) to tolerate 
errors

min
𝑤𝑤,𝑏𝑏,𝜁𝜁𝑖𝑖,𝜉𝜉𝑖𝑖

1
2

𝑤𝑤
2

+ 𝐶𝐶�
𝑖𝑖

𝜁𝜁𝑖𝑖 + 𝜉𝜉𝑖𝑖

𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜖𝜖 + 𝜁𝜁𝑖𝑖 ,
𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 ≤ 𝜖𝜖 + 𝜉𝜉𝑖𝑖 ,

𝜁𝜁𝑖𝑖 , 𝜉𝜉𝑖𝑖 ≥ 0.

slack variables allow predictions
for some training instances to be
off by more than 𝜖𝜖



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 
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