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Goals for the lecture

you should understand the following concepts
« the margin
 the linear support vector machine
 the primal and dual formulations of SVM learning
e support vectors

» Optional: variants of SVM
« Optional: Lagrange Multiplier
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Linear classification

Class +1

Class -1

Assume perfect separation between the two
classes



Attempt

 Given training data {(x;, y;): 1 < i < n} i.i.d. from distribution D

« Hypothesis y = sign(f;,(x)) = sign(w’x)
cy=+1ifwix>0
cy=—-1ifwlix <0

* Let’'s assume that we can optimize to find w



Multiple optimal solutions?

Class -1

Same on empirical loss;
Different on test/expected loss



What about w,? @




What about w;? @
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Most confident: w, @

Class +1




Intuition: margin

O
Class +1
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Margin

We are going to prove the following math expression for margin
using a geometric argument

w45 the hyperplane f,,(x) =

[lw]]

e Lemma 1: x has distance
wlix =0
|fw,b(x)|

[lwl|

e Lemma 2: x has distance
wlix+b=0

to the hyperplane f,, ,(x) =

Need two geometric facts:
* w is orthogonal to the hyperplane f,, ,(x) = w'x +b =0

* Let v be a direction (i.e., unit vector). Then the length of the
projection of x on v is v’ x

o



Margin @

* Lemma 1: x has distance '?lvvifl)l to the hyperplane f,,(x) =
wlix =0
Proof:

* w Is orthogonal to the hyperplane

« The unit direction is —
[lwl|

T
» The projection of x is (L) X =

[Iwl|




Margin: with bias @

« Claim 1: w is orthogonal to the hyperplane f,, ,(x) = w'x + b =
0

Proof:

* pick any x; and x, on the hyperplane
ewlx; +b=0

cwlx, +b=0

*Sowl(x; —x,)=0



Margin: with bias

 Claim 2: 0 has distance m to the hyperplane w’x + b = 0

Proof:
* pick any x; the hyperplane

* Project x; to the unit direction HTI to get the distance

T
b
(W) X, = since w Tx, +b =0



Margin: with bias

* Lemma 2: x has distance lfvlvlvlf}(l I to the hyperplane f,, , (x) =
wix+b=0
Proof:

*Letx = x, + r——, then |r| is the distance

|I I’
 Multiply both sides by w’ and add b

e Left hand side: w'x + b = fwb(x)

* Right hand side: w’x I| “
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SVM: objective

» Absolute margin over all training data points:

- Since only want correct f,, ,, and recall y; € {+1, -1}, we define
the margin to be

i [lwl]
- If 1, , Incorrect on some x;, the margin is negative



SVM: objective

» Maximize margin over all training data points:

ey . yiwTx; + b)

max y = max min = max min
w.b wb i ||w]] wb i llwl]

A bit complicated ...



SVM: simplified objective

» Observation: when (w, b) scaled by a factor ¢, the margin
unchanged
vi(ew"x; +¢cb)  y;(w'x; +b)

[[ew|] [w]

* Let’s consider a fixed scale such that

yi*(WTXi* + b) =1
where x;- is the point closest to the hyperplane



SVM: simplified objective

* Let’s consider a fixed scale such that

yi*(WTXi* + b) =1
where x;- is the point closet to the hyperplane

« Now we have for all data
yiwlx; +b) =1

and at least for one i the equality holds

* Then the margin over all training points is 1



SVM: simplified objective

« Optimization simplified to ,
1
min 5 lIwll

yi(wTx; + b) > 1,Vi

* How to find the optimum w*?
« Solved by Lagrange multiplier method
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SVM: optimization

» Optimization (Quadratic Programming):

TR
min 5 lwll

yi(wTx; + b) > 1,Vi

» Generalized Lagrangian:

1 2
Low, b, @) =5 |Iwl| - z o [y;(wTx; + b) — 1]
i
where a is the Lagrange multiplier



SVM: optimization

« KKT conditions:

oL
—=0,2w=2;ayix; (1)

oL
%ZOJQOZZiaiyi (2)
* Plug into L:

1
L(w,b,a) = X;a; — X a;a;y;yix; % (3)
combined with 0 = Zi aiyi,d; = 0



SVM: optimization

Only depend on inner
products

* Reduces to dual problem: .
L(W, b, a) = z a;, — = a;0 ylij;rx]

i Lj

Zaiyi = O,ai >0

i

- Sincew =Y, a;y;x;, we have wx + b = Y, a;y;ix/x + b



Support Vectors @

« final solution is a sparse linear combination of the training
instances

1.0

* those instances with a; >0
are called support vectors

« they lie on the margin
boundary

 solution NOT changed if

delete the instances with o, =
0

0.5

__. support
vectors

189 0.5 0.0 0.5 1.0
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Lagrangian
 Consider optimization problem:
mvivn f(w)
hi(w) =0,V1<i<lI

 Lagrangian:

Lw,B) = FOW)+ ) fihi(w)

where f3;'s are called Lagrange multipliers



Lagrangian

 Consider optimization problem:
min f(w)
w

h(w)=0,v1 <i<I

« Solved by setting derivatives of Lagrangian to 0

a/:_o_ a/:_o
ow;  0B;




Generalized Lagrangian

 Consider optimization problem:
min f(w)
w

» Generalized Lagrangian:

Low, @ B) = fOW) + ) aigiw) + ) Bihy(w)
J

l

where «;, [;'s are called Lagrange multipliers



Generalized Lagrangian

 Consider the quantity:
Op(w) = max L(w,a,p)

af:a;=0
* Why?
8, (w) = {f (w), if w satisfies all the constraints
: +o0, if w does not satisfy the constraints

« SO0 minimizing f(w) is the same as minimizing 6, (w)

mm fw) = mln Op(w) = min max L(w,a,p)
w apf:a;=0



Lagrange duality

* The primal problem

p* ‘= min f(W) = min max L(W; a, ﬁ)
7 w af:a;20
* The dual problem

d* = max minL(w, «a
nax mi w,a, B)

 Always true:
d* <p”



Lagrange duality

* The primal problem

p* :=min f(w) = min max L(w,a,f)
w w ap:a;i=0
* The dual problem

d*:= max minL(w, a
af:ai=0 w ( ’ 'ﬁ)

* Interesting case: when do we have
d* =p*?



Lagrange duality

« Theorem: under proper conditions, there exists (w*, a*, B*)
such that

d* — L(W*, a*,ﬁ*) — p*

Moreover, (w*, a*, B*) satisfy Karush-Kuhn-Tucker (KKT)

conditions:
0L
= 0, a;gi(w) =0

aWi
gi(w) <0, hj (w) =0, a; >0



Lagrange duality

« Theorem: under proper conditions, there exists (w*, a*, B*)
such that

complementarity

Moreover, (w*, a*, B*) satisfy Karush-Kyhn-Tucker (KKT)
conditions:
oL
=0, a;gi(w) =0

aWi
gi(w) <0, hj (w) =0, a; >0



Lagrange duality @

« Theorem: under proper conditions, there exists (w*, a*, B*)
such that

=L(w", a*,B*) =p°

dual constraints

primal constraints

satisfy Karush-Kuhn-T




Lagrange duality

« What are the proper conditions?

* A set of conditions (Slater conditions):
* f,gi convex, h; affine, and exists w satisfying all g;(w) < 0

* There exist other sets of conditions

» Check textbooks, e.g., Convex Optimization by Boyd and
Vandenberghe
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Hard-margin SVM

» Optimization (Quadratic Programming):

TR
min 5 lwll

yi(wTx; + b) > 1,Vi



SOft'ma rg | n SVM [Cortes & Vapnik, Machine Learning 1995] @

« if the training instances are not linearly separable, the previous
formulation will fail

« we can adjust our approach by using slack variables (denoted
by (;) to tolerate errors

1 2
min il +¢ )¢
l

yiwlx; +b) =>1—;,{ = 0,Vi

* C determines the relative importance of maximizing margin vs.
minimizing slack



The effect of C in soft-margin SVM

-1'9!..0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure from Ben-Hur & Weston,
Methods in Molecular Biology 2010



Hinge loss

« when we covered neural nets, we talked about minimizing
squared loss and cross-entropy loss

« SVMs minimize hinge loss

4F

. squared loss

(%]
' T

loss (error)
when y=1 ?

- 0/1loss

—_
o

) ~ hinge loss

model output h(x)



Support Vector Regression

» the SVM idea can also be A
applied in regression tasks W'x+b)—y=c¢

* an e-insensitive error
function specifies that a
training instance is well
explained if the model’s

it 3 - b _
prediction is within e of y; y—(w'x+b)=¢

\



Support Vector Regression @

« Regression using slack variables (denoted by (;, ¢;) to tolerate
errors

1

2
wr,?,lz?siillwll — CZQ + ¢&;
l

(WTXi+b)—yi SE+(1',
yi—(WTXi+b)SE+€i

3, & = 0. \

slack variables allow predictions
for some training instances to be
off by more than ¢



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
from materials developed by Mark Craven, David Rage, Jude
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
and Pedro Domingos.
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