Support Vector Machines Part 1

CS760@UW-Madison

0

Goals for the lecture

you should understand the following concepts

- the margin
- the linear support vector machine
- the primal and dual formulations of SVM learning
- support vectors
- Optional: variants of SVM
- Optional: Lagrange Multiplier

Motivation

Linear classification

Attempt

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Hypothesis $y=\operatorname{sign}\left(f_{w}(x)\right)=\operatorname{sign}\left(w^{T} x\right)$
- $y=+1$ if $w^{T} x>0$
- $y=-1$ if $w^{T} x<0$
- Let's assume that we can optimize to find w

Multiple optimal solutions?

What about w_{1} ?

What about w_{3} ?

Most confident: w_{2}

Intuition: margin

Margin

We are going to prove the following math expression for margin using a geometric argument

- Lemma 1: x has distance $\frac{\left|f_{w}(x)\right|}{\|w\|}$ to the hyperplane $f_{w}(x)=$ $w^{T} x=0$
- Lemma 2: x has distance $\frac{\left|f_{w, b}(x)\right|}{\|w\|}$ to the hyperplane $f_{w, b}(x)=$ $w^{T} x+b=0$

Need two geometric facts:

- w is orthogonal to the hyperplane $f_{w, b}(x)=w^{T} x+b=0$
- Let v be a direction (i.e., unit vector). Then the length of the projection of x on v is $v^{T} x$

Margin

- Lemma 1: x has distance $\frac{\left|f_{w}(x)\right|}{\|w\|}$ to the hyperplane $f_{w}(x)=$ $w^{T} x=0$
Proof:
- w is orthogonal to the hyperplane
- The unit direction is $\frac{w}{\|w\|}$
- The projection of x is $\left(\frac{w}{\|w\|}\right)^{T} x=\frac{f_{w}(x)}{\|w\|}$

Margin: with bias

- Claim 1: w is orthogonal to the hyperplane $f_{w, b}(x)=w^{T} x+b=$ 0

Proof:

- pick any x_{1} and x_{2} on the hyperplane
- $w^{T} x_{1}+b=0$
- $w^{T} x_{2}+b=0$
- So $w^{T}\left(x_{1}-x_{2}\right)=0$

Margin: with bias

- Claim 2: 0 has distance $\frac{|b|}{\|w\|}$ to the hyperplane $w^{T} x+b=0$

Proof:

- pick any x_{1} the hyperplane
- Project x_{1} to the unit direction $\frac{w}{\|w\|}$ to get the distance
- $\left(\frac{w}{\|w\|}\right)^{T} x_{1}=\frac{-b}{\|w\|}$ since $w^{T} x_{1}+b=0$

Margin: with bias

- Lemma 2: x has distance $\frac{\left|f_{w, b}(x)\right|}{\|w\|}$ to the hyperplane $f_{w, b}(x)=$ $w^{T} x+b=0$
Proof:
- Let $x=x_{\perp}+r \frac{w}{\|w\|}$, then $|r|$ is the distance
- Multiply both sides by w^{T} and add b
- Left hand side: $w^{T} x+b=f_{w, b}(x)$
- Right hand side: $w^{T} x_{\perp}+r \frac{w^{T} w}{\|w\|}+b=0+r\|w\|$

Support Vector Machine (SVM)

SVM: objective

- Absolute margin over all training data points:

$$
\gamma=\min _{i} \frac{\left|f_{w, b}\left(x_{i}\right)\right|}{\|w\|}
$$

- Since only want correct $f_{w, b}$, and recall $y_{i} \in\{+1,-1\}$, we define the margin to be

$$
\gamma=\min _{i} \frac{y_{i} f_{w, b}\left(x_{i}\right)}{\|w\|}
$$

- If $f_{w, b}$ incorrect on some x_{i}, the margin is negative

SVM: objective

- Maximize margin over all training data points:

$$
\max _{w, b} \gamma=\max _{w, b} \min _{i} \frac{y_{i} f_{w, b}\left(x_{i}\right)}{\|w\|}=\max _{w, b} \min _{i} \frac{y_{i}\left(w^{T} x_{i}+b\right)}{\|w\|}
$$

- A bit complicated ...

SVM: simplified objective

- Observation: when (w, b) scaled by a factor c, the margin unchanged

$$
\frac{y_{i}\left(c w^{T} x_{i}+c b\right)}{\|c w\|}=\frac{y_{i}\left(w^{T} x_{i}+b\right)}{\|w\|}
$$

- Let's consider a fixed scale such that

$$
y_{i^{*}}\left(w^{T} x_{i^{*}}+b\right)=1
$$

where $x_{i^{*}}$ is the point closest to the hyperplane

SVM: simplified objective

- Let's consider a fixed scale such that

$$
y_{i^{*}}\left(w^{T} x_{i^{*}}+b\right)=1
$$

where $x_{i^{*}}$ is the point closet to the hyperplane

- Now we have for all data

$$
y_{i}\left(w^{T} x_{i}+b\right) \geq 1
$$

and at least for one i the equality holds

- Then the margin over all training points is $\frac{1}{\|w\|}$

SVM: simplified objective

- Optimization simplified to

$$
\begin{gathered}
\min _{w, b} \frac{1}{2}| | w| |^{2} \\
y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \forall i
\end{gathered}
$$

- How to find the optimum \widehat{w}^{*} ?
- Solved by Lagrange multiplier method

SVM: optimization

SVM: optimization

- Optimization (Quadratic Programming):

$$
\begin{gathered}
\min _{w, b} \frac{1}{2}| | w| |^{2} \\
y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \forall i
\end{gathered}
$$

- Generalized Lagrangian:

$$
\mathcal{L}(w, b, \boldsymbol{\alpha})=\frac{1}{2}| | w \|^{2}-\sum_{i} \alpha_{i}\left[y_{i}\left(w^{T} x_{i}+b\right)-1\right]
$$

where α is the Lagrange multiplier

SVM: optimization

- KKT conditions:

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial w}=0, \rightarrow w=\sum_{i} \alpha_{i} y_{i} x_{i} \\
& \frac{\partial \mathcal{L}}{\partial b}=0, \rightarrow 0=\sum_{i} \alpha_{i} y_{i} \tag{2}
\end{align*}
$$

- Plug into \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}(w, b, \boldsymbol{\alpha})=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \tag{3}
\end{equation*}
$$

combined with $0=\sum_{i} \alpha_{i} y_{i}, \alpha_{i} \geq 0$

SVM: optimization

- Reduces to dual problem:

Only depend on inner

$$
\begin{gathered}
\mathcal{L}(w, b, \alpha)=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\
\sum_{i} \alpha_{i} y_{i}=0, \alpha_{i} \geq 0
\end{gathered}
$$

- Since $w=\sum_{i} \alpha_{i} y_{i} x_{i}$, we have $w^{T} x+b=\sum_{i} \alpha_{i} y_{i} x_{i}^{T} x+b$

Support Vectors

- final solution is a sparse linear combination of the training instances
- those instances with $\alpha_{i}>0$ are called support vectors
- they lie on the margin boundary
- solution NOT changed if delete the instances with $\alpha_{i}=$ 0

Optional: Lagrange Multiplier

0

Lagrangian

- Consider optimization problem:

$$
\begin{gathered}
\min _{w} f(w) \\
h_{i}(w)=0, \forall 1 \leq i \leq l
\end{gathered}
$$

- Lagrangian:

$$
\mathcal{L}(w, \boldsymbol{\beta})=f(w)+\sum_{i} \beta_{i} h_{i}(w)
$$

where β_{i} 's are called Lagrange multipliers

Lagrangian

- Consider optimization problem:

$$
\begin{gathered}
\min _{w} f(w) \\
h_{i}(w)=0, \forall 1 \leq i \leq l
\end{gathered}
$$

- Solved by setting derivatives of Lagrangian to 0

$$
\frac{\partial \mathcal{L}}{\partial w_{i}}=0 ; \quad \frac{\partial \mathcal{L}}{\partial \beta_{i}}=0
$$

Generalized Lagrangian

- Consider optimization problem:

$$
\begin{gathered}
\min _{w} f(w) \\
g_{i}(w) \leq 0, \forall 1 \leq i \leq k \\
h_{j}(w)=0, \forall 1 \leq j \leq l
\end{gathered}
$$

- Generalized Lagrangian:

$$
\mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})=f(w)+\sum_{i} \alpha_{i} g_{i}(w)+\sum_{j} \beta_{j} h_{j}(w)
$$

where α_{i}, β_{j} 's are called Lagrange multipliers

Generalized Lagrangian

- Consider the quantity:

$$
\theta_{P}(w):=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

-Why?

$$
\theta_{P}(w)=\left\{\begin{array}{c}
f(w), \quad \text { if } w \text { satisfies all the constraints } \\
+\infty, \text { if } w \text { does not satisfy the constraints }
\end{array}\right.
$$

- So minimizing $f(w)$ is the same as minimizing $\theta_{P}(w)$

$$
\min _{w} f(w)=\min _{w} \theta_{P}(w)=\min _{w} \max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

Lagrange duality

- The primal problem

$$
p^{*}:=\min _{w} f(w)=\min _{w} \max _{\alpha, \boldsymbol{\beta}: \alpha_{i} \geq 0} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

- The dual problem

$$
d^{*}:=\max _{\alpha, \boldsymbol{\beta}: \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

- Always true:

$$
d^{*} \leq p^{*}
$$

Lagrange duality

- The primal problem

$$
p^{*}:=\min _{w} f(w)=\min _{w} \max _{\alpha, \boldsymbol{\beta}: \alpha_{i} \geq 0} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

- The dual problem

$$
d^{*}:=\max _{\alpha, \boldsymbol{\beta}: \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

- Interesting case: when do we have

$$
d^{*}=p^{*} ?
$$

Lagrange duality

- Theorem: under proper conditions, there exists $\left(w^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)$ such that

$$
d^{*}=\mathcal{L}\left(w^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)=p^{*}
$$

Moreover, ($w^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}$) satisfy Karush-Kuhn-Tucker (KKT) conditions:

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial w_{i}}=0, \quad \alpha_{i} g_{i}(w)=0 \\
g_{i}(w) \leq 0, \quad h_{j}(w)=0, \quad \alpha_{i} \geq 0
\end{gathered}
$$

Lagrange duality

- Theorem: under proper conditions, there exists $\left(w^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)$ such that

$$
d^{*}=\mathcal{L}\left(w^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)=p^{*} \quad \begin{gathered}
\text { dual } \\
\text { complementarity }
\end{gathered}
$$

Moreover, $\left(w^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)$ satisfy Karush-Kuhn-Tucker (KKT) conditions:

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial w_{i}}=0, \quad \alpha_{i} g_{i}(w)=0 \\
g_{i}(w) \leq 0, \quad h_{j}(w)=0, \quad \alpha_{i} \geq 0
\end{gathered}
$$

Lagrange duality

- Theorem: under proper conditions, there exists $\left(w^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)$ such that

Lagrange duality

-What are the proper conditions?

- A set of conditions (Slater conditions):
- f, g_{i} convex, h_{j} affine, and exists w satisfying all $g_{i}(w)<0$
- There exist other sets of conditions
- Check textbooks, e.g., Convex Optimization by Boyd and Vandenberghe

Optional: Variants of SVM

Hard-margin SVM

- Optimization (Quadratic Programming):

$$
\begin{gathered}
\min _{w, b} \frac{1}{2}| | w| |^{2} \\
y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \forall i
\end{gathered}
$$

Soft-margin SMM [Cortes \& Vapnik, Machine Learning 1995]

- if the training instances are not linearly separable, the previous formulation will fail
- we can adjust our approach by using slack variables (denoted by ζ_{i}) to tolerate errors

$$
\begin{gathered}
\left.\min _{w, b, \zeta_{i}} \frac{1}{2}| | w\right|^{2}+C \sum_{i} \zeta_{i} \\
y_{i}\left(w^{T} x_{i}+b\right) \geq 1-\zeta_{i}, \zeta_{i} \geq 0, \forall i
\end{gathered}
$$

- C determines the relative importance of maximizing margin vs. minimizing slack

The effect of C in soft-margin SVM

Figure from Ben-Hur \& Weston,
Methods in Molecular Biology 2010

Hinge loss

- when we covered neural nets, we talked about minimizing squared loss and cross-entropy loss
- SVMs minimize hinge loss

Support Vector Regression

- the SVM idea can also be applied in regression tasks
- an ϵ-insensitive error function specifies that a training instance is well explained if the model's prediction is within ϵ of y_{i}

Support Vector Regression

- Regression using slack variables (denoted by ζ_{i}, ξ_{i}) to tolerate errors

$$
\begin{gathered}
\min _{w, b, \zeta_{i}, \xi_{i}} \frac{1}{2}| | w \|^{2}+C \sum_{i} \zeta_{i}+\xi_{i} \\
\left(w^{T} x_{i}+b\right)-y_{i} \leq \epsilon+\zeta_{i} \\
y_{i}-\left(w^{T} x_{i}+b\right) \leq \epsilon+\xi_{i k} \\
\zeta_{i}, \xi_{i} \geq 0
\end{gathered}
$$

slack variables allow predictions for some training instances to be off by more than ϵ

THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.

