Support Vector Machines-Part 1

CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts

- the margin
- the linear support vector machine
- the primal and dual formulations of SVM learning
- support vectors
- Optional: variants of SVM
- Optional: Lagrange Multiplier

Motivation

Linear classification

Attempt

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution *D*
- Hypothesis $y = \operatorname{sign}(f_w(x)) = \operatorname{sign}(w^T x)$
 - y = +1 if $w^T x > 0$ • y = -1 if $w^T x < 0$
- Let's assume that we can optimize to find w

Multiple optimal solutions?

Same on empirical loss; Different on test/expected loss

What about w_1 ?

What about w_3 ?

Most confident: w_2

Intuition: margin

Margin

Margin

We are going to prove the following math expression for margin using a geometric argument

- Lemma 1: x has distance $\frac{|f_w(x)|}{||w||}$ to the hyperplane $f_w(x) = w^T x = 0$
- Lemma 2: x has distance $\frac{|f_{w,b}(x)|}{||w||}$ to the hyperplane $f_{w,b}(x) = w^T x + b = 0$

Need two geometric facts:

- w is orthogonal to the hyperplane $f_{w,b}(x) = w^T x + b = 0$
- Let v be a direction (i.e., unit vector). Then the length of the projection of x on v is $v^T x$

Margin

• Lemma 1: x has distance $\frac{|f_w(x)|}{||w||}$ to the hyperplane $f_w(x) = w^T x = 0$

Proof:

- w is orthogonal to the hyperplane
- The unit direction is $\frac{w}{||w||}$
- The projection of x is $\left(\frac{w}{||w||}\right)^T x = \frac{f_w(x)}{||w||}$

Margin: with bias

• Claim 1: w is orthogonal to the hyperplane $f_{w,b}(x) = w^T x + b = 0$

Proof:

- pick any x_1 and x_2 on the hyperplane
- $w^T x_1 + b = 0$
- $w^T x_2 + b = 0$
- So $w^T(x_1 x_2) = 0$

Margin: with bias

- Claim 2: 0 has distance $\frac{|b|}{||w||}$ to the hyperplane $w^T x + b = 0$ Proof:
- pick any x_1 the hyperplane
- Project x_1 to the unit direction $\frac{w}{||w||}$ to get the distance

•
$$\left(\frac{w}{||w||}\right)^T x_1 = \frac{-b}{||w||}$$
 since $w^T x_1 + b = 0$

Margin: with bias

• Lemma 2: x has distance $\frac{|f_{w,b}(x)|}{||w||}$ to the hyperplane $f_{w,b}(x) = w^T x + b = 0$

Proof:

- Let $x = x_{\perp} + r \frac{w}{||w||}$, then |r| is the distance
- Multiply both sides by w^T and add b
- Left hand side: $w^T x + b = f_{w,b}(x)$
- Right hand side: $w^T x_{\perp} + r \frac{w^T w}{||w||} + b = 0 + r||w||$

Support Vector Machine (SVM)

3

SVM: objective

• Absolute margin over all training data points:

$$\gamma = \min_{i} \frac{|f_{w,b}(x_i)|}{||w||}$$

• Since only want correct $f_{w,b}$, and recall $y_i \in \{+1, -1\}$, we define the margin to be

$$\gamma = \min_{i} \frac{y_i f_{w,b}(x_i)}{||w||}$$

• If $f_{w,b}$ incorrect on some x_i , the margin is negative

SVM: objective

• Maximize margin over all training data points:

$$\max_{w,b} \gamma = \max_{w,b} \min_{i} \frac{y_i f_{w,b}(x_i)}{||w||} = \max_{w,b} \min_{i} \frac{y_i (w^T x_i + b)}{||w||}$$

• A bit complicated ...

SVM: simplified objective

• Observation: when (w, b) scaled by a factor c, the margin unchanged

$$\frac{y_i(cw^T x_i + cb)}{||cw||} = \frac{y_i(w^T x_i + b)}{||w||}$$

• Let's consider a fixed scale such that

 $y_{i^*}(w^T x_{i^*} + b) = 1$

where x_{i^*} is the point closest to the hyperplane

SVM: simplified objective

Let's consider a fixed scale such that

$y_{i^*}(w^T x_{i^*} + b) = 1$

where x_{i^*} is the point closet to the hyperplane

Now we have for all data

$y_i(w^T x_i + b) \ge 1$

and at least for one i the equality holds

• Then the margin over all training points is $\frac{1}{||w||}$

SVM: simplified objective

Optimization simplified to

 $\min_{w,b} \frac{1}{2} ||w||^2$ $y_i(w^T x_i + b) \ge 1, \forall i$

- How to find the optimum \widehat{w}^* ?
- Solved by Lagrange multiplier method

• Optimization (Quadratic Programming):

```
\min_{w,b} \frac{1}{2} ||w||^2y_i(w^T x_i + b) \ge 1, \forall i
```

• Generalized Lagrangian:

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i} \alpha_i [y_i(w^T x_i + b) - 1]$$

where α is the Lagrange multiplier

• KKT conditions:

$$\frac{\partial \mathcal{L}}{\partial w} = 0, \Rightarrow w = \sum_{i} \alpha_{i} y_{i} x_{i} (1)$$
$$\frac{\partial \mathcal{L}}{\partial b} = 0, \Rightarrow 0 = \sum_{i} \alpha_{i} y_{i} (2)$$

• Plug into *L*:

 $\mathcal{L}(w, b, \boldsymbol{\alpha}) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{ij} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \quad (3)$ combined with $0 = \sum_{i} \alpha_{i} y_{i}, \alpha_{i} \ge 0$

Reduces to dual problem:

Only depend on inner products

• Since
$$w = \sum_{i} \alpha_{i} y_{i} x_{i}$$
, we have $w^{T} x + b = \sum_{i} \alpha_{i} y_{i} x_{i}^{T} x + b$

Support Vectors

- final solution is a sparse linear combination of the training instances
- those instances with $\alpha_i > 0$ are called *support vectors*
 - they lie on the margin boundary
- solution NOT changed if delete the instances with $\alpha_i = 0$

Optional: Lagrange Multiplier

Lagrangian

• Consider optimization problem: $\min_{w} f(w)$

 $h_i(w) = 0, \forall 1 \le i \le l$

• Lagrangian:

$$\mathcal{L}(w, \boldsymbol{\beta}) = f(w) + \sum_{i} \beta_{i} h_{i}(w)$$

where β_i 's are called Lagrange multipliers

Lagrangian

- Consider optimization problem: $\min_{w} f(w)$ $h_i(w) = 0, \forall 1 \le i \le l$
- Solved by setting derivatives of Lagrangian to 0

$$\frac{\partial \mathcal{L}}{\partial w_i} = 0; \quad \frac{\partial \mathcal{L}}{\partial \beta_i} = 0$$

Generalized Lagrangian

• Consider optimization problem:

 $\min_{w} f(w)$ $g_{i}(w) \leq 0, \forall 1 \leq i \leq k$ $h_{j}(w) = 0, \forall 1 \leq j \leq l$ Concretized Learneries:

• Generalized Lagrangian:

$$\mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(w) + \sum_{i} \alpha_{i} g_{i}(w) + \sum_{j} \beta_{j} h_{j}(w)$$

where α_i , β_j 's are called Lagrange multipliers

Generalized Lagrangian

• Consider the quantity:

$$\theta_P(w) \coloneqq \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \ge 0} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

• Why?

 $\theta_P(w) = \begin{cases} f(w), & \text{if } w \text{ satisfies all the constraints} \\ +\infty, & \text{if } w \text{ does not satisfy the constraints} \end{cases}$

• So minimizing f(w) is the same as minimizing $\theta_P(w)$ $\min_{w} f(w) = \min_{w} \theta_P(w) = \min_{w} \max_{\alpha, \beta: \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta)$

• The primal problem

$$p^* \coloneqq \min_{w} f(w) = \min_{w} \max_{\alpha, \beta: \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta)$$

• The dual problem

$$d^* \coloneqq \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \geq 0} \min_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

• Always true:

 $d^* \leq p^*$

• The primal problem

$$p^* \coloneqq \min_{w} f(w) = \min_{w} \max_{\alpha, \beta: \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta)$$

• The dual problem

$$d^* \coloneqq \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \geq 0} \min_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

Interesting case: when do we have

 $d^* = p^*?$

Theorem: under proper conditions, there exists (w^{*}, α^{*}, β^{*}) such that

$$d^* = \mathcal{L}(w^*, oldsymbol{lpha}^*, oldsymbol{eta}^*) = p^*$$

Moreover, (w^*, α^*, β^*) satisfy Karush-Kuhn-Tucker (KKT) conditions:

$$\frac{\partial \mathcal{L}}{\partial w_i} = 0, \qquad \alpha_i g_i(w) = 0$$
$$g_i(w) \le 0, \quad h_j(w) = 0, \qquad \alpha_i \ge 0$$

Theorem: under proper conditions, there exists (w^{*}, α^{*}, β^{*}) such that

$$d^* = \mathcal{L}(w^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = p^*$$

dual complementarity

Moreover, (w^*, α^*, β^*) satisfy Karush-Kuhn-Tucker (KKT) conditions:

$$\frac{\partial \mathcal{L}}{\partial w_i} = 0, \qquad \alpha_i g_i(w) = 0$$
$$g_i(w) \le 0, \quad h_j(w) = 0, \qquad \alpha_i \ge 0$$

Theorem: under proper conditions, there exists (w^{*}, α^{*}, β^{*}) such that

- What are the proper conditions?
- A set of conditions (Slater conditions):
 - f, g_i convex, h_j affine, and exists w satisfying all $g_i(w) < 0$
- There exist other sets of conditions
 - Check textbooks, e.g., Convex Optimization by Boyd and Vandenberghe

Optional: Variants of SVM

Hard-margin SVM

• Optimization (Quadratic Programming):

```
\min_{w,b} \frac{1}{2} ||w||^2y_i(w^T x_i + b) \ge 1, \forall i
```

Soft-margin SVM [Cortes & Vapnik, Machine Learning 1995]

- if the training instances are not linearly separable, the previous formulation will fail
- we can adjust our approach by using *slack variables* (denoted by ζ_i) to tolerate errors

$$\min_{w,b,\zeta_i} \frac{1}{2} ||w||^2 + C \sum_i \zeta_i$$

$$y_i(w^T x_i + b) \ge 1 - \zeta_i, \zeta_i \ge 0, \forall i$$

• *C* determines the relative importance of maximizing margin vs. minimizing slack

The effect of *C* in soft-margin SVM

Figure from Ben-Hur & Weston, *Methods in Molecular Biology* 2010

- when we covered neural nets, we talked about minimizing squared loss and cross-entropy loss
- SVMs minimize *hinge loss*

Support Vector Regression

- the SVM idea can also be applied in regression tasks
- an ε-insensitive error function specifies that a training instance is well explained if the model's prediction is within ε of y_i

Support Vector Regression

• Regression using *slack variables* (denoted by ζ_i, ξ_i) to tolerate errors

$$\min_{w,b,\zeta_i,\xi_i} \frac{1}{2} ||w||^2 + C \sum_i \zeta_i + \xi_i$$
$$(w^T x_i + b) - y_i \le \epsilon + \zeta_i,$$
$$y_i - (w^T x_i + b) \le \epsilon + \xi_i,$$
$$\zeta_i, \xi_i \ge 0.$$

slack variables allow predictions for some training instances to be off by more than ϵ

THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.