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Goals for the lecture
• define the supervised and unsupervised learning tasks
• consider how to represent instances as fixed-length feature 

vectors
• understand the concepts

• instance (example)
• feature (attribute)
• feature space
• feature types
• model (hypothesis)
• training set
• supervised learning
• classification (concept learning) vs. regression
• batch vs. online learning
• i.i.d. assumption
• generalization



Goals for the lecture (continued)

• understand the concepts
• unsupervised learning
• clustering
• anomaly detection
• dimensionality reduction



Can I eat this mushroom?

I don’t know what type it is – I’ve never seen 
it before.  Is it edible or poisonous?



Can I eat this mushroom?

suppose we’re given examples of edible and poisonous mushrooms 
(we’ll refer to these as training examples or training instances)

edible

poisonous

can we learn a model that can be used to classify other mushrooms?



Representing using feature vectors

• we need some way to represent each instance
• one common way to do this: use a fixed-length vector 

to represent features (a.k.a. attributes) of each 
instance 

• also represent class label of each instance
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Standard feature types

• nominal (including Boolean)
• no ordering among possible values

e.g. color ∈ {red, blue, green} (vs. color = 1000  Hertz)

• ordinal
• possible values of the feature are totally ordered

e.g. size  ∈ {small, medium, large}

• numeric (continuous)
weight  ∈ [0…500]

• hierarchical
• possible values are partially ordered in a hierarchy

e.g. shape → closed

polygon continuous

trianglesquare circle ellipse



Feature hierarchy example 

Product

Pet 
Foods Tea

Canned 
Cat Food

Dried 
Cat Food

99 Product 
Classes

2,302 Product 
Subclasses

Friskies 
Liver, 250g

~30K 
Products

Structure of one feature!
Lawrence et al., Data Mining and Knowledge Discovery 5(1-2), 2001



Feature space

example: optical properties of oceans in three spectral bands 
[Traykovski and Sosik, Ocean Optics XIV Conference Proceedings, 1998]

we can think of each instance as representing a point in a d-dimensional feature 
space where d is the number of features



Another view of feature vector

feature 1 feature 2 . . . feature d class

instance 1 0.0 small red true

instance 2 9.3 medium red false

instance 3 8.2 small blue false

. . .

instance n 5.7 medium green true

As a single table



Learning Settings



The supervised learning task

problem setting
• set of possible instances:
• unknown target function: 
• set of models (a.k.a. hypotheses):

given
• training set of instances of unknown target function f

X

output
• model  that best approximates target functionHh∈
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The supervised learning task

• when y is discrete, we term this a classification task                  
(or concept learning)

• when y is continuous, it is a regression task

• there are also tasks in which each y is more structured 
object like a sequence of discrete labels (as in e.g.
image segmentation, machine translation)



Batch vs. online learning

In batch learning, the learner is given the training set as a batch 
(i.e. all at once)

In online learning, the learner receives instances sequentially, and 
updates the model after each (for some tasks it might have to 
classify/make a prediction for each x(i) before seeing y(i) )
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time



i.i.d. instances

• we often assume that training instances are independent 
and identically distributed (i.i.d.) – sampled independently 
from the same unknown distribution

• there are also cases where this assumption does not hold
• cases where sets of  instances have dependencies

• instances sampled from the same medical image
• instances from time series
• etc.

• cases where the learner can select which instances are 
labeled for training

• active learning
• the target function changes over time (concept drift)



Generalization

• The primary objective in supervised learning is to find a model 
that generalizes – one that accurately predicts y for previously 
unseen x

Can I eat this mushroom that 
was not in my training set?



Model representations

throughout the semester, we will consider a broad range 
of representations for learned models, including

• decision trees
• neural networks
• support vector machines
• Bayesian networks
• ensembles of the above 
• etc.



Mushroom features (UCI Repository)

cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s
cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple=u,red=e,white=w,yellow=y
bruises?: bruises=t,no=f
odor: almond=a,anise=l,creosote=c,fishy=y,foul=f, musty=m,none=n,pungent=p,spicy=s
gill-attachment: attached=a,descending=d,free=f,notched=n
gill-spacing: close=c,crowded=w,distant=d
gill-size: broad=b,narrow=n
gill-color: black=k,brown=n,buff=b,chocolate=h,gray=g, green=r,orange=o,pink=p,purple=u,red=e, white=w,yellow=y
stalk-shape: enlarging=e,tapering=t
stalk-root: bulbous=b,club=c,cup=u,equal=e, rhizomorphs=z,rooted=r,missing=? 
stalk-surface-above-ring: fibrous=f,scaly=y,silky=k,smooth=s
stalk-surface-below-ring: fibrous=f,scaly=y,silky=k,smooth=s
stalk-color-above-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o, pink=p,red=e,white=w,yellow=y
stalk-color-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o, pink=p,red=e,white=w,yellow=y
veil-type: partial=p,universal=u
veil-color: brown=n,orange=o,white=w,yellow=y
ring-number: none=n,one=o,two=t
ring-type: cobwebby=c,evanescent=e,flaring=f,large=l, none=n,pendant=p,sheathing=s,zone=z
spore-print-color: black=k,brown=n,buff=b,chocolate=h,green=r, orange=o,purple=u,white=w,yellow=y
population: abundant=a,clustered=c,numerous=n, scattered=s,several=v,solitary=y
habitat: grasses=g,leaves=l,meadows=m,paths=p, urban=u,waste=w,woods=d

sunken is one possible value
of the cap-shape feature



A learned decision tree
if odor=almond, predict edible

if odor=none ∧
spore-print-color=white ∧
gill-size=narrow ∧
gill-spacing=crowded,

predict poisonous



Classification with a learned decision tree

once we have a learned model, we can use it to classify previously 
unseen instances

... foul,  false, brown,  fibrous, bell,=x



Unsupervised learning

in unsupervised learning, we’re given a set of instances, without y’s

goal: discover interesting regularities/structures/patterns that 
characterize the instances

)()2()1(   ...   , mxxx

common unsupervised learning tasks
• clustering
• anomaly detection
• dimensionality reduction



Clustering

given
• training set of instances

output
• model  that divides the training set into clusters such that there 

is intra-cluster similarity and inter-cluster dissimilarity
Hh∈
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Clustering example

Clustering irises using three different features (the colors represent 
clusters identified by the algorithm, not y’s provided as input)



Anomaly detection

given
• training set of instances

output
• model  that represents “normal” xHh∈

learning
task

given
• a previously unseen x

determine
• if x looks normal or anomalous

performance
task
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Anomaly detection example

Let’s say our model is represented by: 1979-2000 average, ±2 stddev
Does the data for 2012 look anomalous?



Dimensionality reduction

given
• training set of instances

output
• model  that represents each x with a lower-dimension feature 

vector while still preserving key properties of the data
Hh∈
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Dimensionality reduction example

We can represent a face using all of the
pixels in a given image

More effective method (for many tasks): 
represent each face as a linear 
combination of eigenfaces



Dimensionality reduction example

represent each face as a linear combination of eigenfaces
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Other learning tasks

later in the semester we’ll cover other learning tasks that are 
not strictly supervised or unsupervised
• reinforcement learning
• semi-supervised learning
• etc.



Zoo of machine learning models

Figure from scikit-learn.org
Note: only a subset of ML methods



Even a subarea has its own collection

Figure from asimovinstitute.org



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 
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