
Reinforcement Learning
Part 1

CS 760@UW-Madison



Goals for the lecture

you should understand the following concepts
• the reinforcement learning task
• Markov decision process
• value functions
• value iteration
• Q functions
• Q learning
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Reinforcement learning (RL)
Task of an agent embedded in an environment

repeat forever
1) sense world
2) reason
3) choose an action to perform
4) get feedback (usually reward = 0)
5) learn

the environment may be the physical world or an artificial one
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Reinforcement learning

agent

environment

state reward action

s0 s1 s2

a0 a1 a2

r0 r1 r2

• set of states S
• set of actions A
• at each time t, agent observes state 

st ∈ S then chooses action at ∈ A
• then receives reward rt and changes 

to state st+1
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RL as Markov decision process (MDP)

agent

environment

state reward action

s0 s1 s2

a0 a1 a2

r0 r1 r2

• Markov assumption

• also assume reward is Markovian

Goal: learn a policy π : S → A for choosing actions that maximizes

for every possible starting state s0 5

𝑃𝑃(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡−1, 𝑎𝑎𝑡𝑡−1, . . . ) = 𝑃𝑃(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)

𝑃𝑃(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡−1, . . . ) = 𝑃𝑃(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)
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Reinforcement learning task
• Suppose we want to learn a control policy π : S → A that 

maximizes                     from every state s∈ S
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each arrow represents an action a and the associated
number represents deterministic reward r(s, a)
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Value Function



Value function for a policy

• given a policy π : S → A define

assuming action sequence chosen
according to π starting at state s

• we want the optimal policy π* where

we’ll denote the value function for this optimal policy as V*(s)
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Value function for a policy π
• Suppose π is shown by red arrows, γ = 0.9
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Value function for an optimal policy π*
• Suppose π*  is shown by red arrows, γ = 0.9
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Using a value function

If we know V*(s), r(st, a), and P(st | st-1, at-1) we can compute π*(s)
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define a new function, closely related to V*
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Key property (Bellman equation):



Value iteration for learning V*(s)

initialize V(s) arbitrarily
loop until policy good enough
{

loop for s ∈ S
{

loop for a ∈ A
{

}

}
}
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Value iteration for learning V*(s)

• V(s) converges to V*(s)

• works even if we randomly traverse environment instead of 
looping through each state and action methodically

• but we must visit each state infinitely often

• implication: we can do online learning as an agent roams around 
its environment

• assumes we have a model of the world: i.e. know P(st | st-1, at-1) 

• What if we don’t?
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Q Learning



Q learning

Review: 

if agent knows Q(s, a), it can choose optimal action without 
knowing P(s’ | s, a) 
and it can learn Q(s, a) without knowing P(s’ | s, a) 
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Q values
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Q learning update rule

for each s, a initialize table entry
observe current state s
do forever

select an action a and execute it
receive immediate reward r
observe the new state s’
update table entry

s ← s’
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Updating Q
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Q learning: incremental update

for each s, a initialize table entry
observe current state s
do forever

select an action a and execute it
receive immediate reward r
observe the new state s’
update table entry

s ← s’

where αn is a parameter dependent
on the number of visits to the given
(s, a) pair
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Convergence of Q learning

• Q learning will converge to the correct Q function

• in the deterministic case

• in the nondeterministic case (using the incremental update rule)

• in practice it is likely to take many, many iterations
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THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 
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