
Decision Tree 
Learning: Part 1

CS 760@UW-Madison



The lectures
organized according to different machine learning 
models/methods

1. supervised learning
• non-parametric-function models: decision tree, nearest neighbors
• parametric 

• discriminative: linear/logistic regression, SVM, neural networks
• generative: Naïve Bayes, Bayesian networks

2. unsupervised learning: clustering*, dimension reduction
3. reinforcement learning
4. other settings: ensemble, active *, semi-supervised*

intertwined with experimental methodologies, theory, etc.
1. evaluation of learning algorithms
2. learning theory: PAC, bias-variance, mistake-bound*
3. feature selection

*: if time permits



Goals for this lecture
you should understand the following concepts

• the decision tree representation
• the standard top-down approach to learning a tree
• Occam’s razor
• entropy and information gain



Decision Tree 
Representation



A decision tree to predict heart disease 
thal

#_major_vessels > 0 present

normal fixed_defect

true false

1 2

present

reversible_defect

chest_pain_type absent

absentabsentabsent present

3 4

Each internal node tests one feature xi

Each branch from an internal node 
represents one outcome of the test

Each leaf predicts y or P(y | x)



Text description of decision trees

• thal = normal
• [#_major_vessels > 0] = true: present
• [#_major_vessels > 0] = false: absent

• thal = fixed_defect: present

thal

#_major_vessels > 0 present

normal fixed_defect

true false

present absent



Text description of decision trees
if odor=almond, predict edible

if odor=none ∧
spore-print-color=white ∧
gill-size=narrow ∧
gill-spacing=crowded,

predict poisonous



Decision Tree Learning



History of decision tree learning

dates of seminal publications: work on these 
2 was contemporaneous

many DT variants have been 
developed since CART and ID3
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CART developed by Leo Breiman, Jerome 
Friedman, Charles Olshen, R.A. Stone

ID3, C4.5, C5.0 developed by Ross Quinlan



Top-down decision tree learning

MakeSubtree(set of training instances D)

C = DetermineCandidateSplits(D)

if stopping criteria met

make a leaf node N

determine class label/probabilities for N

else

make an internal node N

S = FindBestSplit(D, C)

for each outcome k of S

Dk = subset of instances that have outcome k

kth child of N = MakeSubtree(Dk)

return subtree rooted at N



Candidate splits in ID3, C4.5
• splits on nominal features have one branch per value

• splits on numeric features use a threshold

thal

normal fixed_defect reversible_defect

weight ≤ 35

true false



Candidate splits on numeric features

weight ≤ 35

true false

weight

17 35

given a set of training instances D and a specific feature Xi

• sort the values of Xi in D
• evaluate split thresholds in intervals between instances of 

different classes

• could use midpoint of each considered interval as the threshold
• C4.5 instead picks the largest value of Xi in the entire training set that does not 

exceed the midpoint



Candidate splits on numeric features
(in more detail)

// Run this subroutine for each numeric feature at each node of DT induction

DetermineCandidateNumericSplits(set of training instances D, feature Xi)

C = {} // initialize set of candidate splits for feature Xi

S = partition instances in D into sets s1 … sV where the instances in each    
set have the same value for Xi

let vj denote the value of Xi for set sj

sort the sets in S using vj as the key for each sj

for each pair of adjacent sets sj, sj+1 in sorted S
if sj and sj+1 contain a pair of instances with different class labels

// assume we’re using midpoints for splits

add candidate split Xi ≤ (vj + vj+1)/2 to C

return C



Candidate splits
• instead of using k-way splits for k-valued features, could 

require binary splits on all discrete features (CART does this)

thal

normal reversible_defect ∨ fixed_defect

color

red ∨blue green ∨ yellow



Finding The Best Splits



Finding the best split

• How should we select the best feature to split on at each step?

• Key hypothesis: the simplest tree that classifies the training instances 
accurately will work well on previously unseen instances



Occam’s razor

• attributed to 14th century William of Ockham

• “Nunquam ponenda est pluralitis sin necesitate”

• “Entities should not be multiplied beyond necessity”

• “when you have two competing theories that make exactly the same 
predictions, the simpler one is the better”



But a thousand years earlier, 
I said, “We consider it a good
principle to explain the 
phenomena by the simplest 
hypothesis possible.”



Occam’s razor and decision trees

• there are fewer short models (i.e. small trees) than 
long ones

• a short model is unlikely to fit the training data well 
by chance

• a long model is more likely to fit the training data well 
coincidentally

Why is Occam’s razor a reasonable heuristic for 
decision tree learning?



Finding the best splits

• Can we find and return the smallest possible decision tree 
that accurately classifies the training set?

• Instead, we’ll use an information-theoretic heuristic to 
greedily choose splits

NO! This is an NP-hard problem
[Hyafil & Rivest, Information Processing Letters, 1976]



Information theory background

• consider a problem in which you are using a code to communicate 
information to a receiver

• example: as bikes go past, you are communicating the manufacturer 
of each bike 



Information theory background

• suppose there are only four types of bikes
• we could use the following code

11

10

01

00

• expected number of bits we have to communicate:  
2 bits/bike

Trek

Specialized

Cervelo

Serrota

type code



Information theory background
• we can do better if the bike types aren’t equiprobable
• optimal code uses                    bits for event with 

probability

1

2

3

3

1

01

001

000

Type/probability # bits code

• expected number of bits we have to communicate:  
1.75 bits/bike
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Entropy
• entropy is a measure of uncertainty associated with a 

random variable

• defined as the expected number of bits required to 
communicate the value of the variable

entropy function for
binary variable
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Conditional entropy

• What’s the entropy of Y if we condition on some other 
variable X?

where

𝐻𝐻(𝑌𝑌|𝑋𝑋) = �
𝑥𝑥∈values(𝑋𝑋)

𝑃𝑃(𝑋𝑋 = 𝑥𝑥)𝐻𝐻(𝑌𝑌|𝑋𝑋 = 𝑥𝑥)

𝐻𝐻(𝑌𝑌|𝑋𝑋 = 𝑥𝑥) = − �
𝑦𝑦∈values(𝑌𝑌)

𝑃𝑃(𝑌𝑌 = 𝑦𝑦|𝑋𝑋 = 𝑥𝑥) log2 𝑃𝑃 (𝑌𝑌 = 𝑦𝑦|𝑋𝑋 = 𝑥𝑥)



Conditional entropy: example

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

𝐻𝐻 𝑌𝑌 𝑋𝑋 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = −0.5 × log 0.5 − 0.25 × log 0.25 − 0.25 × log 0.25 − 0 = 1.5
𝐻𝐻 𝑌𝑌 𝑋𝑋 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = −0.5 × log 0.5 − 0.25 × log 0.25 − 0 − 0.25 × log 0.25 = 1.5

𝐻𝐻 𝑌𝑌 𝑋𝑋 = 0.5 × 𝐻𝐻 𝑌𝑌 𝑋𝑋 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 0.5 × 𝐻𝐻 𝑌𝑌 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 1.5



Information gain (a.k.a. mutual information)

• Mutual information between two random variables:

• Measures how much uncertainty of Y that X can reduce 

𝐼𝐼 𝑌𝑌;𝑋𝑋 = 𝐻𝐻 𝑌𝑌 − 𝐻𝐻(𝑌𝑌|𝑋𝑋)

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

𝐼𝐼 𝑌𝑌;𝑋𝑋 = 𝐻𝐻 𝑌𝑌 − 𝐻𝐻 𝑌𝑌 𝑋𝑋 = 1.75 − 1.5 = 0.25



Relations between the concepts

Figure from wikipedia.org



Information gain for choosing splits

• choosing splits in ID3: select the split S that most reduces 
the conditional entropy of Y for training set D

D indicates that we’re calculating probabilities 
using the specific sample D



Information gain example 



Information gain example 

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

• What’s the information gain of splitting on Humidity?
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Information gain example 

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

• Is it better to split on Humidity or Wind?

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

✔
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One limitation of information gain

• information gain is biased towards tests with many 
outcomes

• e.g. consider a feature that uniquely identifies each 
training instance

• splitting on this feature would result in many branches, each of 
which is “pure” (has instances of only one class)

• maximal information gain!



Gain ratio
• to address this limitation, C4.5 uses a splitting criterion 

called gain ratio

• gain ratio normalizes the information gain by the entropy of 
the split being considered



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 
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