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Goals for the lecture

you should understand the following concepts
• k-NN classification
• k-NN regression
• edited nearest neighbor
• locally weighted regression
• inductive bias (hypothesis space bias, preference bias)



Nearest-neighbor classification

learning stage
• given a training set (x(1), y(1)), …, (x(m), y(m)), do nothing           

(it’s sometimes called a lazy learner)

classification stage
• given: an instance x(q) to classify
• find the training-set instance x(i) that is most similar to x(q)

• return the class value y(i)



The decision regions

x1

x2

Voronoi diagram: each polyhedron indicates the region of feature space that
is in the nearest neighborhood of each training instance



k-nearest-neighbor classification

classification task
• given: an instance x(q) to classify
• find the k training-set instances (x(1), y(1)), …, (x(k), y(k)) that 

are most similar to x(q)

• return the class value
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How can we determine distance

suppose all features are discrete
• Hamming distance: count the number of features for 

which two instances differ

suppose all features are continuous
• Euclidean distance:

• Manhattan distance:
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How can we determine distance

• if we have a mix of discrete/continuous features:

• typically want to apply to continuous features some type of 
normalization (values range 0 to 1) or standardization (values 
distributed according to standard normal)

• many other possible distance functions we could use …
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Standardizing numeric features
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• given the training set D, determine the mean and stddev for feature xi

• standardize each value of feature xi as follows
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• do the same for test instances, using the same  𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 derived from 
the training data 



Variants



k-nearest-neighbor regression

learning stage
• given a training set (x(1), y(1)), …, (x(m), y(m)), do nothing

prediction stage
• given: an instance x(q) to make a prediction for
• find the k training-set instances (x(1), y(1)), …, (x(k), y(k)) that 

are most similar to x(q)

• return the value
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Distance-weighted nearest neighbor
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We can have instances contribute to a prediction 
according to their distance from x(q)
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classification:

regression:



Irrelevant features

x1

here’s a case in which there
is one relevant feature x1 and a 1-
NN rule classifies each instance 
correctly

consider the effect of an
irrelevant feature x2 on distances and 
nearest neighbors

x1

x2



Locally weighted regression

• one way around this limitation is to weight features 
differently

• locally weighted regression is one nearest-neighbor 
variant that does this

prediction task
• given: an instance x(q) to make a prediction for
• find the k training-set instances (x(1), y(1)), …, (x(k), y(k))                                   

that are most similar to x(q)

• return the value



Locally weighted regression

prediction/learning task
• find the weights wi for each x(q) by minimizing

• this is done at prediction time, specifically for x(q)

• can do this using gradient descent (to be covered soon)
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Speeding up k-NN

• k-NN is a “lazy” learning algorithm – does virtually nothing at 
training time

• but classification/prediction time can be costly when the 
training set is large

• two general strategies for alleviating this weakness
• don’t retain every training instance (edited nearest 

neighbor)
• use a smart data structure to look up nearest neighbors 

(e.g. a k-d tree)



Edited instance-based learning

• select a subset of the instances that still provide accurate classifications

• incremental deletion
start with all training instances in memory
for each training instance (x(i), y(i))

if other training instances provide correct classification for (x(i), y(i))
delete it from the memory

• incremental growth
start with an empty memory
for each training instance (x(i), y(i))

if other training instances in memory don’t correctly classify (x(i), y(i))
add it to the memory



Strength and Limitations



Strengths of instance-based learning

• simple to implement
• “training” is very efficient
• adapts well to on-line learning
• robust to noisy training data (when k > 1)
• often works well in practice



Limitations of instance-based learning
• sensitive to range of feature values

• sensitive to irrelevant and correlated features, although …
• there are variants (such as locally weighted regression) 

that learn weights for different features
• later we’ll talk about feature selection methods

• classification/prediction can be inefficient, although edited 
methods and k-d trees can help alleviate this weakness

• doesn’t provide much insight into problem domain because 
there is no explicit model



Inductive bias

• in order to generalize (i.e. make predictions for previously 
unseen instances) a learning algorithm must have an 
inductive bias

• inductive bias is the set of assumptions a learner uses to 
be able to predict yi for a previously unseen instance xi

• two components
• hypothesis space bias: determines the models that can 

be represented
• preference bias: specifies a preference ordering within 

the space of models



Consider the inductive bias of DT 
and k-NN learners

learner hypothesis space bias preference bias

ID3 decision tree trees with single-feature, axis-
parallel splits

small trees identified by 
greedy search

k-NN Voronoi decomposition determined 
by nearest neighbors

instances in neighborhood 
belong to same class



Optional:
k-d Tree: Data Structure for 
Finding Nearest Neighbors



k-d trees
a k-d tree is similar to a decision tree except that each internal node
• stores one instance
• splits on the median value of the feature having the highest variance 
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Finding nearest neighbors with a k-d tree

• use branch-and-bound search
• priority queue stores

• nodes considered
• lower bound on their distance to query instance

• lower bound given by distance using a single feature

• average case:  O(log2m)
• worst case:      O(m)  where m is the size of the training-set



Finding nearest neighbors in a k-d tree
NearestNeighbor(instance x(q))

PQ = { } // minimizing priority queue
best_dist = ∞ // smallest distance seen so far
PQ.push(root, 0)
while PQ is not empty

(node, bound) = PQ.pop();
if (bound ≥ best_dist)

return best_node.instance // nearest neighbor found
dist = distance(x(q), node. instance)
if (dist < best_dist)

best_dist = dist
best_node = node

if (q[node.feature] – node.threshold > 0)
PQ.push(node.left, x(q)[node.feature] – node.threshold)
PQ.push(node.right, 0)

else
PQ.push(node.left, 0)
PQ.push(node.right, node. threshold - x(q) [node.feature])

return best_node. instance



k-d tree example (Manhattan distance)
given query
x(q) = (2, 3)
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k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)
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k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f
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pop f

given query
x(q) = (2, 3)



k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0)

q
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k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)
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k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)

10.0 4.0 f
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given query
x(q) = (2, 3)



k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)

10.0 4.0 f (e, 0)  (h, 4) (b, 7)
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k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)

10.0 4.0 f (e, 0)  (h, 4) (b, 7)
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x2 > 8
d

x2 > 11
a

pop f
pop c
pop e

given query
x(q) = (2, 3)



k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)

10.0 4.0 f (e, 0)  (h, 4) (b, 7)

1.0 1.0 e (d, 1)  (h, 4)  (b, 7)

q

x1 > 6
f
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e
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g
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a

pop f
pop c
pop e

given query
x(q) = (2, 3)



k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)

10.0 4.0 f (e, 0)  (h, 4) (b, 7)

1.0 1.0 e (d, 1)  (h, 4)  (b, 7)

q

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

pop f
pop c
pop e
pop d return e

given query
x(q) = (2, 3)



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 
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